ฉันกำลังทำงานผ่านตัวอย่างในการวิเคราะห์ข้อมูล Doing Bayesianของ Kruschke โดยเฉพาะการวิเคราะห์ความแปรปรวนแบบปัวซองในพัวซอง 22 ซึ่งเขานำเสนอเป็นทางเลือกแทนการทดสอบไคสแควร์เป็นประจำสำหรับความเป็นอิสระสำหรับตารางฉุกเฉิน
ฉันสามารถดูวิธีที่เราได้รับข้อมูลเกี่ยวกับการโต้ตอบที่เกิดขึ้นบ่อยหรือน้อยกว่าที่คาดไว้ถ้าตัวแปรนั้นเป็นอิสระ (เช่นเมื่อ HDI ไม่รวมศูนย์)
คำถามของฉันคือฉันจะคำนวณหรือตีความขนาดผลกระทบในกรอบงานนี้ได้อย่างไร ยกตัวอย่างเช่น Kruschke เขียน "การรวมกันของดวงตาสีฟ้ากับผมสีดำเกิดขึ้นน้อยกว่าที่คาดถ้าสีตาและสีผมเป็นอิสระ" แต่เราจะอธิบายความแข็งแกร่งของความสัมพันธ์นั้นได้อย่างไร? ฉันจะรู้ได้อย่างไรว่าการโต้ตอบใดที่รุนแรงกว่าการโต้ตอบอื่น ๆ หากเราทำการทดสอบไคสแควร์ของข้อมูลเหล่านี้เราอาจคำนวณCramér V เป็นเครื่องวัดขนาดเอฟเฟกต์โดยรวม ฉันจะแสดงขนาดลักษณะพิเศษในบริบทเบย์นี้ได้อย่างไร
นี่คือตัวอย่างที่มีในตัวเองจากหนังสือ (เขียนในR
) ในกรณีที่คำตอบถูกซ่อนจากฉันในสายตาธรรมดา ...
df <- structure(c(20, 94, 84, 17, 68, 7, 119, 26, 5, 16, 29, 14, 15,
10, 54, 14), .Dim = c(4L, 4L), .Dimnames = list(c("Black", "Blond",
"Brunette", "Red"), c("Blue", "Brown", "Green", "Hazel")))
df
Blue Brown Green Hazel
Black 20 68 5 15
Blond 94 7 16 10
Brunette 84 119 29 54
Red 17 26 14 14
นี่คือผลลัพธ์ที่ออกมาบ่อยครั้งพร้อมการวัดขนาดเอฟเฟกต์ (ไม่ใช่ในหนังสือ):
vcd::assocstats(df)
X^2 df P(> X^2)
Likelihood Ratio 146.44 9 0
Pearson 138.29 9 0
Phi-Coefficient : 0.483
Contingency Coeff.: 0.435
Cramer's V : 0.279
นี่คือผลลัพธ์ของ Bayesian ที่มี HDIs และความน่าจะเป็นของเซลล์ (โดยตรงจากหนังสือ):
# prepare to get Krushkes' R codes from his web site
Krushkes_codes <- c(
"http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/Programs/openGraphSaveGraph.R",
"http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/Programs/PoissonExponentialJagsSTZ.R")
# download Krushkes' scripts to working directory
lapply(Krushkes_codes, function(i) download.file(i, destfile = basename(i)))
# run the code to analyse the data and generate output
lapply(Krushkes_codes, function(i) source(basename(i)))
และนี่คือพล็อตหลังของแบบจำลองเลขชี้กำลังของปัวซองที่ใช้กับข้อมูล:
และแปลงของการกระจายหลังเกี่ยวกับความน่าจะเป็นของเซลล์โดยประมาณ: