คำถามติดแท็ก comparison

3
วิธีการวัด "ระยะทาง" ทางสถิติระหว่างการแจกแจงความถี่สองครั้ง
ฉันกำลังดำเนินโครงการวิเคราะห์ข้อมูลซึ่งเกี่ยวข้องกับการตรวจสอบเวลาการใช้งานเว็บไซต์ตลอดระยะเวลาหนึ่งปี สิ่งที่ฉันต้องการจะทำคือการเปรียบเทียบว่า "สอดคล้อง" รูปแบบการใช้พูดว่าใกล้เคียงกับรูปแบบที่เกี่ยวข้องกับการใช้งานเป็นเวลา 1 ชั่วโมงสัปดาห์ละครั้งหรือหนึ่งที่เกี่ยวข้องกับการใช้มันเป็นเวลา 10 นาทีต่อครั้ง 6 สัปดาห์ละครั้ง ฉันตระหนักถึงหลายสิ่งที่สามารถคำนวณได้: เอนโทรปีของแชนนอน:วัดว่า "ความแน่นอน" ในผลลัพธ์นั้นแตกต่างกันเท่าใดนั่นคือการกระจายความน่าจะเป็นที่ต่างไปจากชุดที่เป็นเท่าไหร่; Kullback-Liebler divergence:วัดว่าการกระจายความน่าจะเป็นหนึ่งที่แตกต่างจากที่อื่น Jensen-Shannon divergence:คล้ายกับ KL-divergence แต่มีประโยชน์มากกว่าเมื่อมันส่งคืนค่า จำกัด การทดสอบ Smirnov-Kolmogorov : การทดสอบเพื่อตรวจสอบว่าฟังก์ชันการแจกแจงสะสมสองฟังก์ชันสำหรับตัวแปรสุ่มต่อเนื่องมาจากตัวอย่างเดียวกันหรือไม่ การทดสอบแบบไคสแควร์: การทดสอบความดีพอดีเพื่อตัดสินว่าการกระจายความถี่แตกต่างจากการกระจายความถี่ที่คาดหวังได้ดีเพียงใด สิ่งที่ฉันต้องการจะทำคือการเปรียบเทียบระยะเวลาการใช้งานจริง (สีฟ้า) แตกต่างจากเวลาการใช้งานที่เหมาะสมที่สุด (สีส้ม) ในการกระจาย การแจกแจงเหล่านี้ไม่ต่อเนื่องและรุ่นด้านล่างจะถูกทำให้เป็นมาตรฐานเพื่อการแจกแจงความน่าจะเป็น แกนนอนแสดงจำนวนเวลา (เป็นนาที) ที่ผู้ใช้ใช้บนเว็บไซต์ สิ่งนี้ถูกบันทึกไว้ในแต่ละวันของปี; หากผู้ใช้ไม่ได้ไปที่เว็บไซต์เลยนับว่าเป็นระยะเวลาเป็นศูนย์ แต่สิ่งเหล่านี้จะถูกลบออกจากการแจกแจงความถี่ ด้านขวาเป็นฟังก์ชันการแจกแจงสะสม ปัญหาเดียวของฉันคือแม้ว่าฉันจะได้รับ JS-divergence เพื่อคืนค่า จำกัด เมื่อฉันดูผู้ใช้ที่แตกต่างกันและเปรียบเทียบการกระจายการใช้งานของพวกเขากับอุดมคติ แต่ฉันได้รับค่าที่เหมือนกันมากที่สุด (ซึ่งไม่ดี ตัวบ่งชี้ว่ามีความแตกต่างกันเท่าใด) นอกจากนี้ข้อมูลบางส่วนจะหายไปเมื่อ normalizing …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.