2
การตีความของ betas เมื่อมีหลายตัวแปรเด็ดขาด
ผมเข้าใจแนวคิดที่ว่าเบต้า 0เป็นค่าเฉลี่ยสำหรับเมื่อตัวแปรเด็ดขาดจะมีค่าเท่ากับ 0 (หรือกลุ่มอ้างอิง) ทำให้การตีความท้ายว่าค่าสัมประสิทธิ์การถดถอยคือความแตกต่างในค่าเฉลี่ยของทั้งสองประเภท ถึงแม้จะมี> 2 ประเภทฉันจะถือว่าแต่ละβอธิบายความแตกต่างระหว่างของประเภทที่ค่าเฉลี่ยและการอ้างอิงβ^0β^0\hat\beta_0β^β^\hat\beta แต่จะเกิดอะไรขึ้นถ้ามีตัวแปรเพิ่มเติมเข้ามาในโมเดลหลายตัวแปร? ตอนนี้การสกัดกั้นหมายความว่าอะไรมันไม่สมเหตุสมผลที่จะเป็นค่าเฉลี่ยสำหรับการอ้างอิงของตัวแปรเด็ดขาดสองอัน ตัวอย่างเช่นหากเพศ (M (ref) / F) และ Race (white (ref) / black) ทั้งคู่อยู่ในแบบจำลอง เป็นβ 0ค่าเฉลี่ยสำหรับผู้ชายสีขาวเท่านั้น? เราตีความความเป็นไปได้อื่น ๆ อย่างไรβ^0β^0\hat\beta_0 ในฐานะที่เป็นข้อความแยกต่างหาก: คำสั่งที่ตรงกันข้ามนั้นทำหน้าที่เป็นวิธีในการตรวจสอบการดัดแปลงเอฟเฟกต์หรือไม่? หรือเพียงแค่เห็นเอฟเฟกต์ ( ) ในระดับที่ต่างกันβ^β^\hat\beta