2
ความสับสนที่เกี่ยวข้องกับการสุ่มตัวอย่างกิ๊บส์
ฉันเจอบทความนี้ที่มันบอกว่าในการสุ่มตัวอย่างกิ๊บส์ทุกตัวอย่างเป็นที่ยอมรับ ฉันสับสนเล็กน้อย ทำไมทุกตัวอย่างที่ยอมรับมันมาบรรจบกับการแจกแจงแบบคงที่ โดยทั่วไปอัลกอริทึม Metropolis เรายอมรับเป็น min (1, p (x *) / p (x)) โดยที่ x * เป็นจุดตัวอย่าง ฉันคิดว่า x * ชี้ให้เราไปยังตำแหน่งที่ความหนาแน่นสูงดังนั้นเราจึงย้ายไปยังการกระจายเป้าหมาย ดังนั้นฉันคิดว่ามันจะย้ายไปยังการกระจายเป้าหมายหลังจากการเผาไหม้ในช่วงเวลา อย่างไรก็ตามในการสุ่มตัวอย่างของกิ๊บส์เรายอมรับทุกอย่างแม้ว่ามันอาจจะพาเราไปที่อื่น สมมติว่าเรามีการกระจาย Z เราไม่สามารถคำนวณ Z. ในอัลกอริทึมมหานครเราใช้คำว่าเพื่อรวมการกระจายบวกกับค่าคงที่ normalizing Z ยกเลิก ดังนั้นมันก็โอเคp(θ)=c(θ)/Zp(θ)=c(θ)/Zp(\theta) = c(\theta)/Zค(θn E W) / c (θo l d)c(θnew)/c(θold)c(\theta^{new})/c(\theta^{old})c ( θ )c(θ)c(\theta) แต่ในการสุ่มตัวอย่างกิ๊บส์เราใช้การกระจายที่ไหนc ( θ )c(θ)c(\theta) สำหรับเช่นในกระดาษhttp://books.nips.cc/papers/files/nips25/NIPS2012_0921.pdfที่กำหนดของมัน …