3
ขั้นตอนวิธีการเรียนรู้วงดนตรีขั้นสุดยอดในงานการจดจำรูปแบบ?
โครงสร้างของคำถามนี้มีดังต่อไปนี้:ในตอนแรกฉันให้แนวคิดของการเรียนรู้ทั้งมวลฉันยังจัดทำรายการของการจดจำรูปแบบจากนั้นฉันก็ยกตัวอย่างของอัลกอริทึมการเรียนรู้ทั้งมวลและในที่สุดก็แนะนำคำถามของฉัน ผู้ที่ไม่ต้องการข้อมูลเสริมทั้งหมดอาจแค่ดูหัวข้อข่าวและตรงไปที่คำถามของฉัน การเรียนรู้ทั้งมวลคืออะไร ตามบทความ Wikipedia : ในสถิติและการเรียนรู้ของเครื่องจักรวิธีการทั้งมวลใช้อัลกอริทึมการเรียนรู้หลายอย่างเพื่อให้ได้ประสิทธิภาพการทำนายที่ดีกว่าที่จะได้รับจากอัลกอริทึมการเรียนรู้ที่เป็นส่วนประกอบใด ๆ เพียงอย่างเดียว ซึ่งแตกต่างจากชุดสถิติในกลศาสตร์เชิงสถิติซึ่งโดยทั่วไปแล้วจะไม่มีที่สิ้นสุดชุดการเรียนรู้ของเครื่องหมายถึงชุดรูปแบบทางเลือกที่ จำกัด ของคอนกรีตเท่านั้น แต่โดยทั่วไปแล้วจะช่วยให้โครงสร้างมีความยืดหยุ่นมากขึ้น ตัวอย่างของงานการจดจำรูปแบบ: การรู้จำอักขระด้วยแสง การจดจำบาร์โค้ด การจดจำป้ายทะเบียนรถ การตรวจจับใบหน้า การรู้จำเสียง การจดจำรูปภาพ การจำแนกเอกสาร ตัวอย่างของอัลกอริทึมการเรียนรู้ทั้งมวล: ต่อไปนี้ขั้นตอนวิธีการเรียนรู้ชุดใช้สำหรับงานพีอาร์ (ตามวิกิพีเดีย) Ensemble learning algorithm (การควบคุม meta-algorithms สำหรับการรวมอัลกอริทึมการเรียนรู้หลายตัวเข้าด้วยกัน): Boosting (การเรียนรู้ของเครื่องโดยใช้เมตาดาต้าอัลกอริธึมสำหรับการลดอคติและความแปรปรวนในการเรียนรู้แบบมีผู้ควบคุมและอัลกอริทึมการเรียนรู้ของเครื่องซึ่งเปลี่ยนผู้เรียนที่อ่อนแอไปเป็นคนที่แข็งแกร่ง) การรวม Bootstrap ("การห่อ ") (เครื่องเรียนรู้ชุดเมตาอัลกอริทึมที่ออกแบบมาเพื่อปรับปรุงเสถียรภาพและความแม่นยำของอัลกอริทึมการเรียนรู้ของเครื่องที่ใช้ในการจำแนกทางสถิติและการถดถอย) ค่าเฉลี่ยของ Ensemble (กระบวนการสร้างหลายรุ่นและรวมเข้าด้วยกันเพื่อสร้างเอาต์พุตที่ต้องการซึ่งต่างจากการสร้างเพียงหนึ่งโมเดลบ่อยครั้งที่ชุดของโมเดลทำงานได้ดีกว่าโมเดลใด ๆ ก็ตามเนื่องจากข้อผิดพลาดต่างๆของโมเดล "เฉลี่ยหมด" ) ส่วนผสมของผู้เชี่ยวชาญการผสมผสานของผู้เชี่ยวชาญ การใช้งานที่แตกต่างกัน ตระการตาของโครงข่ายประสาทเทียม (ชุดของโมเดลโครงข่ายประสาทเทียมที่ใช้ตัดสินใจโดยเฉลี่ยผลลัพธ์ของแบบจำลองแต่ละตัว) ป่าสุ่ม (วิธีการเรียนรู้ทั้งมวลสำหรับการจำแนกการถดถอยและงานอื่น …