2
ข้อได้เปรียบของการเพิ่มประสิทธิภาพจับกลุ่มอนุภาคเหนือการปรับแต่งแบบเบย์สำหรับการปรับจูนพารามิเตอร์?
มีการวิจัยร่วมสมัยจำนวนมากเกี่ยวกับการเพิ่มประสิทธิภาพแบบเบส์ (1) สำหรับการปรับแต่งพารามิเตอร์ไฮเปอร์พารามิเตอร์ ML แรงจูงใจในการขับขี่ที่นี่คือจำเป็นต้องมีจุดข้อมูลจำนวนน้อยที่สุดเพื่อทำการเลือกอย่างชาญฉลาดเกี่ยวกับจุดที่คุ้มค่าที่จะลอง (การเรียกใช้ฟังก์ชันตามวัตถุประสงค์มีราคาแพง - ปัญหา SVM ขนาดใหญ่ที่ฉันทำงานอยู่อาจใช้เวลาระหว่างนาทีและชั่วโมงให้เสร็จสมบูรณ์ ในอีกทางหนึ่งOptunityคือการนำอนุภาคไปจับที่ที่อยู่สำหรับงานเดียวกัน ฉันไม่คุ้นเคยกับ PSO อย่างท่วมท้น แต่ดูเหมือนว่ามันจะต้องมีประสิทธิภาพน้อยกว่าในแง่ของการต้องใช้จำนวนจุดทดลองมากขึ้นดังนั้นการประเมินฟังก์ชันวัตถุประสงค์เพื่อประเมินพื้นผิวพารามิเตอร์ ฉันไม่มีรายละเอียดสำคัญที่ทำให้ PSO เป็นที่ต้องการของ BO ในบริบทการเรียนรู้ของเครื่องหรือไม่ หรือเป็นตัวเลือกระหว่างทั้งสองบริบทโดยเนื้อแท้เสมอสำหรับงานการปรับจูนพารามิเตอร์? (1) Shahriari et al, "นำมนุษย์ออกจากวง: การทบทวน Bayesian Optimizaiton"