เมื่อใดกฎการให้คะแนนที่เหมาะสมจะมีการประมาณค่าทั่วไปในการจัดหมวดหมู่ที่ดีกว่า
วิธีการทั่วไปในการแก้ปัญหาการจำแนกประเภทคือการระบุคลาสของแบบจำลองผู้สมัครแล้วทำการเลือกรูปแบบโดยใช้ขั้นตอนบางอย่างเช่นการตรวจสอบความถูกต้องข้าม โดยปกติคนหนึ่งเลือกรุ่นที่มีความถูกต้องสูงสุดหรือบางฟังก์ชั่นที่เกี่ยวข้องที่ข้อมูลปัญหาถอดรหัสเฉพาะเช่น\FβFβ\text{F}_\beta สมมติว่าเป้าหมายสุดท้ายคือการสร้างลักษณนามที่แม่นยำ (ซึ่งคำจำกัดความความถูกต้องอีกครั้งขึ้นอยู่กับปัญหา) ในสถานการณ์ที่ดีกว่าในการเลือกรูปแบบโดยใช้กฎการให้คะแนนที่เหมาะสมเมื่อเทียบกับสิ่งที่ไม่เหมาะสมเช่นความแม่นยำ ฯลฯ นอกจากนี้เราจะไม่สนใจปัญหาของความซับซ้อนของแบบจำลองและสมมติว่าเราพิจารณาทุกโมเดลที่มีโอกาสเท่ากัน ก่อนหน้านี้ฉันจะบอกว่าไม่เคย การจำแนกเป็นปัญหาง่ายกว่าการถดถอย [1], [2] และเราสามารถหาขอบเขตที่แคบกว่าสำหรับอดีตได้มากกว่าในภายหลัง ( ) นอกจากนี้ยังมีกรณีเมื่อพยายามที่จะถูกต้องตรงกับความน่าจะได้ผลในการที่ไม่ถูกต้องขอบเขตการตัดสินใจหรืออิง อย่างไรก็ตามจากการสนทนาที่นี่และรูปแบบการลงคะแนนของชุมชนเกี่ยวกับปัญหาดังกล่าวฉันได้ตั้งคำถามกับมุมมองนี้* * * *∗* Devroye, Luc ทฤษฎีความน่าจะเป็นของการจดจำรูปแบบ ฉบับ 31. สปริงเกอร์, 1996. มาตรา 6.7 Kearns, Michael J. และ Robert E. Schapire การเรียนรู้ที่ไม่มีการแจกแจงอย่างมีประสิทธิภาพเกี่ยวกับแนวคิดความน่าจะเป็น รากฐานของวิทยาศาสตร์คอมพิวเตอร์, 1990. การดำเนินการ, การประชุมวิชาการประจำปีครั้งที่ 31 IEEE, 1990 ( ∗ )(∗)(*)ข้อความนี้อาจจะเลอะเทอะเล็กน้อย ฉันหมายถึงเฉพาะที่ได้รับข้อมูลฉลากของรูปแบบด้วยและดูเหมือนจะง่ายต่อการประเมินขอบเขตการตัดสินใจมากกว่าการประมาณความน่าจะเป็นแบบมีเงื่อนไขอย่างแม่นยำS= { (x1,Y1) , …