คำถามติดแท็ก tbats

3
การวิเคราะห์อนุกรมเวลารายวัน
ฉันกำลังพยายามทำการวิเคราะห์อนุกรมเวลาและยังใหม่กับฟิลด์นี้ ฉันมีการนับเหตุการณ์ทุกวันตั้งแต่ปี 2549-2552 และฉันต้องการให้พอดีกับแบบจำลองอนุกรมเวลา นี่คือความก้าวหน้าที่ฉันได้ทำ: timeSeriesObj = ts(x,start=c(2006,1,1),frequency=365.25) plot.ts(timeSeriesObj) พล็อตผลที่ฉันได้รับคือ: เพื่อตรวจสอบว่ามีฤดูกาลและแนวโน้มในข้อมูลหรือไม่ฉันทำตามขั้นตอนที่กล่าวถึงในโพสต์นี้: ets(x) fit <- tbats(x) seasonal <- !is.null(fit$seasonal) seasonal และในบล็อกของ Rob J Hyndman : library(fma) fit1 <- ets(x) fit2 <- ets(x,model="ANN") deviance <- 2*c(logLik(fit1) - logLik(fit2)) df <- attributes(logLik(fit1))$df - attributes(logLik(fit2))$df #P value 1-pchisq(deviance,df) ทั้งสองกรณีระบุว่าไม่มีฤดูกาล เมื่อฉันพล็อต ACF & PACF ของซีรีส์นี่คือสิ่งที่ฉันได้รับ: …

1
วิธีการตีความผลลัพธ์ของรุ่น TBATS และการวิเคราะห์แบบจำลอง
ฉันได้รับข้อมูลความต้องการรายครึ่งชั่วโมงซึ่งเป็นช่วงเวลาตามฤดูกาล ฉันใช้tbatsในforecastแพ็คเกจใน R และได้ผลลัพธ์ดังนี้: TBATS(1, {5,4}, 0.838, {<48,6>, <336,6>, <17520,5>}) หมายความว่าชุดข้อมูลไม่จำเป็นต้องใช้การแปลง Box-Cox หรือไม่และมีข้อผิดพลาดคือ ARMA (5, 4) และคำ 6, 6 และ 5 ใช้เพื่ออธิบายฤดูกาล พารามิเตอร์ที่ทำให้ชื้นคือ 0.8383 หมายความว่ามันคือการแปลงด้วยหรือไม่ ต่อไปนี้เป็นพล็อตการสลายตัวของรุ่น: ฉันสงสัยว่าจะทำอย่างไรlevelและslopeบอกเกี่ยวกับตัวแบบ 'ความชัน' บอกแนวโน้ม แต่จะเป็นlevelอย่างไร วิธีการรับพล็อตที่ชัดเจนสำหรับsession 1และsession 2ซึ่งเป็นฤดูกาลรายวันและรายสัปดาห์ตามลำดับ ฉันยังต้องรู้วิธีการวินิจฉัยแบบจำลองtbatsเพื่อประเมินโมเดลยกเว้นค่า RMSE วิธีปกติคือการตรวจสอบว่าข้อผิดพลาดเป็นสัญญาณรบกวนสีขาว แต่ที่นี่ข้อผิดพลาดควรจะเป็นซีรีส์ ARMA ฉันพล็อตข้อผิดพลาด 'acf' และ 'pacf' และฉันไม่คิดว่ามันจะดูเหมือน ARMA (5,4) หมายความว่าแบบจำลองของฉันไม่ดีหรือไม่? acf(resid(model1),lag.max = 1000) pacf(resid(model1),lag.max=1000) …

1
การตีความการสลายตัวของอนุกรมเวลาโดยใช้ TBATS จากแพ็คเกจพยากรณ์
ฉันต้องการที่จะแยกข้อมูลอนุกรมเวลาต่อไปนี้ออกเป็นฤดูกาลแนวโน้มและส่วนประกอบที่เหลือ ข้อมูลนี้เป็นข้อมูลการระบายความร้อนพลังงานทุกชั่วโมงจากอาคารพาณิชย์: TotalCoolingForDecompose.ts <- ts(TotalCoolingForDecompose, start=c(2012,3,18), freq=8765.81) plot(TotalCoolingForDecompose.ts) มีผลกระทบตามฤดูกาลรายวันและรายสัปดาห์ที่ชัดเจนดังนั้นจึงขึ้นอยู่กับคำแนะนำจาก: วิธีการสลายอนุกรมเวลาที่มีองค์ประกอบตามฤดูกาลหลายรายการ? ฉันใช้tbatsฟังก์ชั่นจากforecastแพ็คเกจ: TotalCooling.tbats <- tbats(TotalCoolingForDecompose.ts, seasonal.periods=c(24,168), use.trend=TRUE, use.parallel=TRUE) plot(TotalCooling.tbats) ซึ่งผลลัพธ์ใน: อะไรlevelและslopeส่วนประกอบของรุ่นนี้อธิบายอะไร ฉันจะได้รับtrendและremainderส่วนประกอบคล้ายกับกระดาษที่อ้างอิงโดยแพคเกจนี้ ( De Livera, Hyndman และ Snyder (JASA, 2011) )
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.