3
แบบจำลองที่เหมาะสมสำหรับข้อมูลการนับที่น้อยเกินไปคืออะไร?
ฉันพยายามที่จะสร้างแบบจำลองข้อมูลนับใน R ที่เห็นได้ชัดว่าด้อยค่า (พารามิเตอร์การกระจายตัว ~ .40) นี่อาจเป็นสาเหตุที่รูปแบบแบบglmมีfamily = poissonหรือเชิงลบglm.nbมีความหมายไม่สำคัญ เมื่อฉันดูคำอธิบายข้อมูลของฉันฉันไม่มีข้อมูลการนับทั่วไปและส่วนที่เหลือในเงื่อนไขการทดลองทั้งสองของฉันก็เหมือนกันเช่นกัน ดังนั้นคำถามของฉันคือ: ฉันต้องใช้การวิเคราะห์การถดถอยแบบพิเศษสำหรับข้อมูลการนับของฉันหรือไม่หากข้อมูลการนับของฉันไม่ทำงานเหมือนข้อมูลการนับ บางครั้งฉันต้องเผชิญกับภาวะไม่ปกติ (โดยปกติจะเป็นเพราะความทรมาน) แต่ฉันใช้วิธีบูตสแตรปเปอร์เซ็นไทล์สำหรับการเปรียบเทียบวิธีการที่ถูกตัด (Wilcox, 2012) เพื่ออธิบายถึงความไม่เป็นมาตรฐาน วิธีการสำหรับการนับข้อมูลสามารถทดแทนด้วยวิธีการที่แข็งแกร่งใด ๆ ที่แนะนำโดย Wilcox และรับรู้ในแพ็คเกจ WRS หรือไม่ หากฉันต้องใช้การวิเคราะห์การถดถอยสำหรับข้อมูลนับฉันจะบัญชีสำหรับการกระจายต่ำกว่าได้อย่างไร ปัวซองและการกระจายตัวแบบลบลบถือว่าการกระจายตัวที่สูงขึ้นดังนั้นจึงไม่เหมาะสมใช่ไหม ฉันคิดว่าจะใช้การกระจายแบบกึ่ง - ปัวซองแต่โดยทั่วไปจะแนะนำให้กระจายตัวมากเกินไป ฉันอ่านเกี่ยวกับตัวแบบเบต้า - ทวินามซึ่งดูเหมือนว่าจะสามารถอธิบายได้มากกว่า - รวมถึงการด้อยค่าลงในVGAMชุดของ R ผู้เขียนดูเหมือนจะแนะนำการกระจาย Poisson tildedแต่ฉันไม่สามารถหาได้ในแพ็คเกจ . ใครบ้างที่สามารถแนะนำขั้นตอนการประมวลผลข้อมูลที่ด้อยคุณภาพและอาจมีตัวอย่างรหัส R ให้หรือไม่