ฉันกำลังอ่านเกี่ยวกับเครือข่าย adversarial (GANs) และฉันมีข้อสงสัยเกี่ยวกับมัน จนถึงตอนนี้ฉันเข้าใจว่าใน GAN มีเครือข่ายประสาทสองประเภทที่แตกต่างกัน: หนึ่งคือกำเนิด ( ) และเลือกปฏิบัติอื่น ( ) เครือข่ายนิวรัลแบบกำเนิดสร้างข้อมูลบางอย่างซึ่งเครือข่ายนิวรัลแบบเลือกปฏิบัติตัดสินความถูกต้อง GAN เรียนรู้โดยผ่านฟังก์ชั่นการสูญเสียไปยังเครือข่ายทั้งสอง
discriminative ( ) neural nets ในตอนแรกรู้ได้อย่างไรว่าข้อมูลที่สร้างโดยนั้นถูกต้องหรือไม่? เราต้องฝึกก่อนแล้วเพิ่มมันเข้าไปใน GAN ด้วยหรือไม่?
ลองพิจารณาสุทธิที่ผ่านการฝึกอบรมของฉันซึ่งสามารถจัดประเภทรูปภาพที่มีความแม่นยำร้อยละ 90 หากเราเพิ่มสุทธินี้ไปยัง GAN มีความน่าจะเป็น 10% มันจะจำแนกภาพผิด หากเราฝึก GAN ด้วยสุทธินี้แล้วมันจะมีข้อผิดพลาด 10% เหมือนกันในการจำแนกภาพหรือไม่? ถ้าใช่แล้วทำไม GAN ถึงแสดงผลลัพธ์ที่มีแนวโน้ม