3
ทอพอโลยีแบบใดที่ไม่ได้สำรวจส่วนใหญ่ในการเรียนรู้ของเครื่อง? [ปิด]
ปิด คำถามนี้จะต้องมีมากขึ้นมุ่งเน้น ไม่ยอมรับคำตอบในขณะนี้ ต้องการปรับปรุงคำถามนี้หรือไม่ อัปเดตคำถามเพื่อให้มุ่งเน้นที่ปัญหาเดียวโดยแก้ไขโพสต์นี้ ปิดให้บริการใน29 วันที่ผ่านมา เรขาคณิตและ AI เมทริกซ์, ก้อน, ชั้น, กองและวรรณะเป็นสิ่งที่เราสามารถเรียกได้อย่างถูกต้องโครงสร้าง พิจารณาโทโพโลยีในบริบทนี้การออกแบบทางเรขาคณิตระดับสูงของระบบการเรียนรู้ เมื่อความซับซ้อนเพิ่มขึ้นก็มักจะมีประโยชน์ในการแสดงโครงสร้างเหล่านี้เป็นโครงสร้างกราฟกำกับ แผนภาพสถานะและผลงานของมาร์คอฟเกี่ยวกับทฤษฎีเกมเป็นสองสถานที่ซึ่งมักใช้กราฟกำกับ กราฟกำกับมีจุดยอด (มักจะมองเห็นเป็นรูปร่างปิด) และขอบมักมองเห็นเป็นลูกศรที่เชื่อมต่อรูปร่าง นอกจากนี้เรายังสามารถเป็นตัวแทนของ GANs เป็นกราฟกำกับซึ่งผลลัพธ์ของแต่ละเน็ตไดรฟ์จะช่วยฝึกอบรมเรื่องอื่น ๆ ในลักษณะที่เป็นปฏิปักษ์ GANs คล้ายกับแถบMöbiusทอพอโลยี เราไม่สามารถค้นพบการออกแบบและสถาปัตยกรรมใหม่ ๆ โดยไม่เข้าใจไม่เพียง แต่คณิตศาสตร์ของการมาบรรจบกันบนทางออกที่ดีที่สุดหรือการติดตาม แต่ยังรวมถึงทอพอโลยีของการเชื่อมต่อเครือข่ายที่สามารถรองรับการบรรจบกัน มันเหมือนกับการพัฒนาตัวประมวลผลครั้งแรกในขณะที่จินตนาการถึงสิ่งที่ระบบปฏิบัติการต้องการก่อนที่จะเขียนระบบปฏิบัติการ หากต้องการดูว่าเราไม่ได้พิจารณาโทโพโลยีแบบใดเรามาดูกันว่ามีใครบ้าง ขั้นตอนที่หนึ่ง - การอัดขึ้นรูปในมิติที่สอง ในปี 1980 ความสำเร็จประสบความสำเร็จด้วยการขยายการออกแบบ perceptron ดั้งเดิม นักวิจัยได้เพิ่มมิติที่สองเพื่อสร้างเครือข่ายประสาทหลายชั้น การบรรจบกันอย่างมีเหตุผลนั้นเกิดขึ้นได้จากการย้อนกลับของการไล่ระดับของฟังก์ชันข้อผิดพลาดผ่านการไล่ระดับสีของฟังก์ชั่นการเปิดใช้งานซึ่งลดทอนโดยอัตราการเรียนรู้และชุบด้วย meta-parameters อื่น ๆ ขั้นตอนที่สอง - การเพิ่มมิติให้กับสัญญาณอินพุตแบบไม่ต่อเนื่อง เราเห็นการเกิดขึ้นของเครือข่าย …