วงกลมที่ทับซ้อนกัน


16

คุณควรจะเขียนโปรแกรมหรือฟังก์ชั่นที่ได้รับNจากNตารางสี่เหลี่ยมเว้นระยะห่างเท่า ๆ กันและเอาท์พุทที่เป็นของแข็งวงกลมไว้หรือผลตอบแทนจำนวนตารางสี่เหลี่ยมที่มีการซ้อนทับบางส่วนหรือเต็มโดยวงกลมที่เป็นของแข็ง

การทับซ้อนขนาด 0 (เช่นเมื่อวงกลมแตะเพียงเส้นเดียว) จะไม่ถูกนับ (ทับซ้อนเหล่านี้เกิดขึ้นที่เช่นN = 10.)

ตัวอย่าง

N = 8 (64 squares), Slices = 60

[Imgur] (http://i.imgur.com/3M1ekwY.png)

อินพุต

  • N > 0จำนวนเต็ม (กริดจะมีN * Nกำลังสอง)

เอาท์พุต

  • จำนวนเต็มหมายถึงจำนวนชิ้นวงกลมทึบ

ตัวอย่าง

(คู่อินพุต - เอาต์พุต)

Inputs:  1 2 3  4  5  6  7  8  9 10  11  12  13  14  15
Outputs: 1 4 9 16 25 36 45 60 77 88 109 132 149 172 201

นี่คือรหัสกอล์ฟที่สั้นที่สุดที่จะชนะ


มันเป็นแค่ฉันหรือทุกคนขาดทางออกที่ชัดเจนที่นี่? แก้ไข:ไม่เป็นไร N^2ตอนแรกที่ดูเหมือนง่าย
nyuszika7h

คำตอบ:


5

Pyth, 27 26

-*QQ*4lfgsm^d2T*QQ^%2_UtQ2

ลองใช้งานออนไลน์: Pyth Compiler / Executor

ฉันใช้2Nx2Nกริดและนับ2x2สแควร์สที่ซ้อนทับกัน มันสั้นกว่านี้เล็กน้อยเนื่องจากฉันรู้จักรัศมีNแล้ว

ที่จริงฉันไม่นับกำลังสองที่ทับซ้อนกัน ฉันนับสี่เหลี่ยมไม่ทับซ้อนกันของวอดที่สองคูณจำนวน 4 N*Nและลบผลจาก

คำอธิบายสำหรับโซลูชัน 27 รายการ:

-*QQ*4lfgsm^-Qd2T*QQ^t%2UQ2   implicit: Q = input()
                     t%2UQ    generates the list [2, 4, 6, ..., Q]
                    ^     2   Cartesian product: [(2, 2), (2, 4), ..., (Q, Q)]
                              These are the coordinates of the right-down corners
                              of the 2x2 squares in the 2nd quadrant. 
       f                      Filter the coordinates T, for which:
        gsm^-Qd2T*QQ             dist-to-center >= Q
                                 more detailed: 
          m     T                   map each coordinate d of T to:
           ^-Qd2                       (Q - d)^2
         s                          add these values
        g        *QQ                 ... >= Q*Q
    *4l                       take the length and multiply by 4
-*QQ                          Q*Q - ...

คำอธิบายสำหรับโซลูชัน 26 รายการ:

ฉันสังเกตเห็นว่าฉันใช้พิกัดเพียงครั้งเดียวและลบพิกัดออกQทันที ทำไมไม่สร้างเพียงค่าQ - coordsโดยตรง

สิ่งนี้เกิดขึ้น%2_UtQค่ะ เพียงคนเดียวที่มีขนาดใหญ่กว่าถ่านในการแก้ปัญหาก่อนหน้านี้และบันทึกตัวอักษร 2 -Qเพราะผมไม่ได้มีการลบคุณ


6

Python 2, 72

lambda n:sum(n>abs(z%-~n*2-n+(z/-~n*2-n)*1j)for z in range(~n*~n))+n+n-1

Ungolfed:

def f(n):
    s=0
    for x in range(n+1):
        for y in range(n+1):
            s+=(x-n/2)**2+(y-n/2)**2<(n/2)**2
    return s+n+n-1

จุดกริดสำหรับหนึ่ง(n+1)*(n+1)ตาราง เซลล์จะทับซ้อนวงกลมถ้าจุดกริดที่ใกล้ที่สุดอยู่ตรงกลางอยู่ภายในวงกลม ดังนั้นเราสามารถนับคะแนนกริดได้ยกเว้นการพลาด2*n+1จุดกริดที่แกน (ทั้งคู่และคี่n) ดังนั้นเราจึงแก้ไขให้ถูกต้องด้วยตนเอง

รหัสจะบันทึกอักขระโดยใช้ระยะทางที่ซับซ้อนเพื่อคำนวณระยะห่างจากจุดศูนย์กลางและวนซ้ำเพื่อวนซ้ำในดัชนีเดียว


6

CJam, 36 35 34 27 bytes

สิ่งนี้กลายเป็นอัลกอริธึมเดียวกับ xnor's แต่ฉันสงสัยว่ามีดีกว่านี้หรือไม่

rd:R,_m*{{2*R(-_g-}/mhR<},,

คำอธิบายรหัส :

rd:R                                "Read the input as double and store it in R";
    ,_                              "Get 0 to input - 1 array and take its copy";
      m*                            "Get Cartesian products";
                                    "Now we have coordinates of top left point of each";
                                    "of the square in the N by N grid";
        {               },,         "Filter the squares which are overlapped by the";
                                    "circle and count the number";
         {        }/                "Iterate over the x and y coordinate of the top left";
                                    "point of the square and unwrap them";
          2*                        "Scale the points to reflect a 2N grid square";
            R(-                     "Reduce radius - 1 to get center of the square";
               _g-                  "Here we are reducing or increasing the coordinate";
                                    "by 1 in order to get the coordinates of the vertex";
                                    "of the square closer to the center of the grid";
                    mhR<            "Get the distance of the point from center and check";
                                    "if its less than the radius of the circle";

UPDATE : ใช้เคล็ดลับ 2N จาก Jakube พร้อมกับเทคนิคอื่น ๆ เพื่อประหยัด 7 ไบต์!

ลองออนไลน์ได้ที่นี่


2

Pyth,  44  36

JcQ2L^-+b<bJJ2sm+>*JJ+y/dQy%dQqQ1*QQ

พยายามทำความสะอาดเล็กน้อยในกรณีที่ฉันสามารถโกนบางไบต์

คำอธิบาย

                           Q = eval(input())    (implicit)
JcQ2                       calculate half of Q and store in J
L                          define function y(b) that returns
 ^-+b<bJJ2                 (b - J + (1 if b < J else 0)) ^ 2
s                          output sum of
 m                 *QQ      map d over integers 0..(Q*Q-1)
  +
   >*JJ                      J*J is greater than
       +y/dQy%dQ              sum of y(d / Q) and y(d % Q)
                qQ1          or Q is 1; see below

ฉันต้องตรวจสอบอย่างชัดเจนn = 1เนื่องจากอัลกอริทึมของฉันเพียงตรวจสอบมุมของสี่เหลี่ยมที่ใกล้ที่สุดกับศูนย์ (และไม่มีการครอบคลุมในn = 1)


2

ระดับแปดเสียง(74) (66) (64)

นี่คือรุ่นอ็อกเทฟ โดยทั่วไปการค้นหาจุดยอดทั้งหมดภายในวงกลมแล้วค้นหาสี่เหลี่ยมทั้งหมดด้วยจุดยอดที่ถูกต้องอย่างน้อยหนึ่งครั้งผ่านการแปลง 64 ไบต์:

x=ndgrid(-1:2/input(''):1);sum(conv2(x.^2+x'.^2<1,ones(2))(:)>0)

66 ไบต์:

x=meshgrid(-1:2/input(''):1);sum(conv2(x.^2+x'.^2<1,ones(2))(:)>0)

74 ไบต์:

n=input('');x=ones(n+1,1)*(-1:2/n:1);sum(conv2(x.^2+x'.^2<1,ones(2))(:)>0)

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.