ฉันติดคำถามต่อไปนี้:
"ภาษาปกติเป็นภาษาที่แน่นอนที่ได้รับการยอมรับโดยออโต จำกัด เนื่องจากข้อเท็จจริงนี้แสดงให้เห็นว่าหากภาษาได้รับการยอมรับจากออโตเมติก จำกัดบางอันดังนั้นก็เป็นที่ยอมรับของบางอัน จำกัดประกอบด้วยทุกคำ ของย้อนกลับ "
ฉันติดคำถามต่อไปนี้:
"ภาษาปกติเป็นภาษาที่แน่นอนที่ได้รับการยอมรับโดยออโต จำกัด เนื่องจากข้อเท็จจริงนี้แสดงให้เห็นว่าหากภาษาได้รับการยอมรับจากออโตเมติก จำกัดบางอันดังนั้นก็เป็นที่ยอมรับของบางอัน จำกัดประกอบด้วยทุกคำ ของย้อนกลับ "
คำตอบ:
เมื่อได้รับภาษาปกติเรารู้ (เป็นหลักโดยคำจำกัดความ) ว่าเป็นที่ยอมรับโดยออโตไฟไนต์ จำกัด บางตัวดังนั้นจึงมีชุด จำกัด ของรัฐที่มีการเปลี่ยนผ่านที่เหมาะสมซึ่งนำเราจากสถานะเริ่มต้นไปสู่สถานะที่ยอมรับ เป็นสตริงในLเราสามารถยืนยันได้ว่ามีเพียงรัฐเดียวที่ยอมรับได้เพื่อทำให้สิ่งต่าง ๆ ง่ายขึ้น การยอมรับภาษาย้อนกลับสิ่งที่เราต้องทำคือย้อนกลับทิศทางของการเปลี่ยนเปลี่ยนสถานะเริ่มต้นไปเป็นสถานะยอมรับและรัฐยอมรับเป็นสถานะเริ่มต้น แล้วเรามีเครื่องที่เป็น "ย้อนกลับ" เมื่อเทียบกับเดิมและยอมรับภาษา R
คุณต้องแสดงให้เห็นว่าคุณสามารถสร้างหุ่นยนต์ จำกัด ที่ยอมรับสตริงในที่กำหนดแน่นอนหุ่นยนต์ที่ยอมรับสตริงในLนี่คือขั้นตอนการทำ
เราจะทำให้เป็นแบบนี้ทั้งหมด เราเริ่มต้นด้วยการระบุทฤษฎีบท
ทฤษฎีบท. ถ้าเป็นภาษาปกติแล้วเพื่อให้เป็น R
ให้= ( Q , Σ , δ , Q , F )เป็น NFA และปล่อยL = L ( ) ε -NFA Rระบุไว้ด้านล่างยอมรับภาษาL R
พิสูจน์ ครั้งแรกที่เราพิสูจน์ได้ว่าคำสั่งดังต่อไปนี้: เส้นทางจากที่จะในที่มีป้ายกำกับWและถ้าหาก∃เส้นทางจากหน้าไปQในRที่มีป้ายกำกับW R (ย้อนกลับของW ) สำหรับQ , P ∈ Q ก . หลักฐานอยู่โดยอุปนัยกับความยาวของW
ปล่อยให้และสำหรับบางแทนสำหรับx Rรับประกันว่าQ ∈ δ * R ( s , W R ) ∀ s ∈ F เนื่องจากมีเส้นทางที่มีป้ายกำกับด้วยϵจากq sไปยังทุกสถานะในF A (3. ในคำจำกัดความของA R ) and a path from every state in to the state labeled with , then there is a path labeled with from to . This proves the theorem.
Notice that this proves that as well.
Please edit if there are any formatting errors or any flaws in my proof....
To add to the automata-based transformations described above, you can also prove that regular languages are closed under reversal by showing how to convert a regular expression for into a regular expression for . To do so, we'll define a function on regular expressions that accepts as input a regular expression for some language , then produces a regular expression for the language . This is defined inductively on the structure of regular expressions:
You can formally prove this construction correct as an exercise.
Hope this helps!
rev()
notation. :) I also put down REV(R1&R2) = REV(R1)&REV(R2)
; I have a regex implementation which has intersection. Yes; I'm thinking of adding an operator for reversal perhaps R\r
(reverse preceding regex element).
REV(~R)
is the reverse of the set of all strings outside of R. Is that the same as ~REV(R)
: the set of all strings outside of the reverse of the set denoted by R? This is not clear at all because any palindromes in R
are also in REV(R)
.
Using regular expressions, prove that if is a regular language then the \emph{reversal} of , , is also regular. In particular, given a regular expression that describes , show by induction how to convert it into a regular expression that describes . Your proof should not make recourse to NFAs.
We will assume that we are given a regular expression that describes . Let us first look at the concatination operator (), and then we can move onto more advanced operators. So our cases of concatenation deal with the length of what is being concatenated. So first we will break all concatenations from to . When dealing with these break the components up as much as possible: , but you cannot break associative order between different comprehensions of course.
When
When , we have the empty string which is already reversed thus the mechanism does not change
When is just a letter, as in , the reversal is just that letter,
When , we have a single constituent so we just reverse that constituent and thus
When where k is odd, we have a regular expression which can be written as . The reversal of these even length strings is simple. Merely switch the 0 index with the k index. Then Switch the 1 index with k-1 index. Continue till the each element was switched once. Thus the last element is now the first in the reg ex, and the first is the last. The second to last is the second and the second is the second to last. Thus we have a reversed reg ex which will accept the reversed string (first letter is the last etc.) And of course we reverse each constituent. Thus we would get
When where k is even, we have a regular expression generally which can be written as . The reversal of these even length strings is simple. Merely switch the 0 index with the k index. Then Switch the 1 index with k-1 index. Continue till the each element was switched once, but the k/2 element (an integer because k is even). Thus the last element is now the first in the reg ex, and the first is the last. The second to last is the second and the second is the second to last. Thus we have a reversed reg ex which will accept the reversed string (first letter is the last etc.). And that middle letter. And of course we reverse each constituent. Thus we would get
Okay the hard part is done. Let us look to the operator. This is merely a union of sets. So given two strings, , the reverse of is only . The union will not change. And this makes sense. This will only add strings to a set. It does not matter which order they are added to the set, all that matters is that they are.
The kleene star operator is the same. It is merely adding strings to a set, not telling us how we should construt the string persay. So to reverse a kleene star of a string , is only . Reversal can just move through them.
Thus to reverse this we simply follow the rules. To reverse the outer union we simply reverse its two components. To reverse this: kleene star, we simply reverse what is inside it . Then to reverse a concatenation, we index and then switch greatest with least. So we start with and get . To reverse that single letter, we reach our base case and get . This process outlined above describes an inductive description of this change.