อัลกอริธึมเริมเดินอย่างตะกละตะกลามที่มุมของโพลีท็อปเพื่อหาทางออกที่ดีที่สุดสำหรับปัญหาการโปรแกรมเชิงเส้น เป็นผลให้คำตอบอยู่เสมอที่มุมของ polytope วิธีการจุดภายในรถเดินเข้าไปด้านในของ polytope เป็นผลให้เมื่อระนาบทั้งหมดของโพลีท็อปเป็นแบบที่ดีที่สุด (หากฟังก์ชันวัตถุประสงค์ขนานกับระนาบอย่างแน่นอน) เราจะได้คำตอบในระนาบกลางระนาบนี้
สมมติว่าเราต้องการหามุมของ polytope แทน ตัวอย่างเช่นถ้าเราต้องการจับคู่สูงสุดโดยลดลงเป็นการเขียนโปรแกรมเชิงเส้นเราไม่ต้องการคำตอบที่ประกอบด้วย "การจับคู่ประกอบด้วย 0.34% ของขอบ XY และ 0.89% ของขอบ AB และ ... " เราต้องการคำตอบด้วย 0 และ 1 (ซึ่ง simplex จะให้เราเนื่องจากทุกมุมประกอบด้วย 0 และ 1 ของ) มีวิธีทำเช่นนี้ด้วยวิธีการจุดภายในที่รับประกันว่าจะหาวิธีการแก้ปัญหามุมที่แน่นอนในเวลาพหุนาม? (เช่นบางทีเราสามารถปรับเปลี่ยนฟังก์ชั่นวัตถุประสงค์เพื่อสนับสนุนมุม)