ผู้อ่านพระนักเขียน


17

ให้Cเป็นCCC Let (×)เป็น bifunctor สินค้าที่อยู่ในCCในฐานะที่เป็นแมวคือ CCC เราสามารถแกง(×) :

curry(×):C(CC)

curry(×)A=λB.A×B

หมวด Functor CCมีโครงสร้างแบบ monoidal ปกติ หนังสือในCCเป็น monad ในCC เราพิจารณาผลิตภัณฑ์ จำกัด เป็นโครงสร้าง monoidal ในCC

curry(×)1id

A B.curry(×)(A×B)(curry(×)A)(curry(×)B)

ดังนั้น(curry(×))รักษาโครงสร้าง monoidal ดังนั้นมันจะส่ง monoid ไปที่ monad และ comonoid ไปที่ comonad กล่าวคือมันลำเลียงพลหนังสือwเพื่อ(Writer w) monad (ดูที่ความหมาย - wจะต้องเป็นหนังสือ) ในทำนองเดียวกันมันจะส่งสัญญาณ comonoid ในแนวทแยงไปยังCoreader comonad

ตอนนี้เพื่อความเป็นรูปธรรมฉันตีแผ่การสร้าง Writer

เริ่ม. ที่จริงWriter=Coreader=curry(×)พวกเขาก็มีชื่อที่แตกต่างกันใน Haskell เรามีHaskell monoid w,mappend,mempty :

mappend:w×ww

mempty:1w

นักเขียน functor จึงต้องแมยัง morphisms เช่นและอีพีทีวาย ฉันเขียนสิ่งนี้เป็นด้านล่างแม้ว่ามันจะไม่ถูกต้องใน Haskell:mappendmempty

Writer mappend:Writer(w×w)Writer w

คือการเปลี่ยนแปลงธรรมชาติซึ่มส์ใน C C โดยคุณสมบัติของยูR R Y ( × )มันเป็นฟังก์ชั่นซึ่งจะO ( C )และให้ซึ่มส์ใน C :Writer mappendCCcurry(×)aOb(C)C

Writer mappend a=mappend×(id(a)):Writer(w×w)aWriter w a

ทางการส่วนประกอบเงินก้อนประเภทWและปั๊มเหมือนเดิม ตรงนี้เป็นคำจำกัดความของ Writer in Haskell หนึ่งอุปสรรคที่เป็นที่สำหรับ monad W R ฉันทีอีอาร์W , μ , η ที่เราต้องการWriter mappend awaWriter w,μ,η

μ:Writer wWriter wWriter w

คือความไม่เข้ากันของประเภท แต่ functors เหล่านี้เป็น isomorphic: โดย associator ปกติสำหรับผลิตภัณฑ์ จำกัด ซึ่งเป็นมอร์ฟธรรมชาติλ w × ( w × a ) = W r i t e r w W r i t e r wWriter(w×w)=λa.(w×w)×aλa.w×(w×a)=Writer wWriter w . จากนั้นเราจะนิยามผ่านW r i t e r mμ d ฉันละเว้นการก่อสร้างของ ηผ่านอีพีทีวายWriter mappendηmempty

เขียนเป็น functor ที่รักษาไดอะแกรมสับเปลี่ยนเช่นแยมหนังสือ equalities เพื่อให้เรามีที่สำหรับรับ equalities พิสูจน์ = a หนังสือใน( C C ) = a monad ในC . ปลายWriter w,μ,η(CC)C

แล้วReaderและ Cowriter ล่ะ Reader เชื่อมต่อกับ Coreader ดังที่อธิบายไว้ในคำจำกัดความของ Coreader ดูลิงก์ด้านบน ในทำนองเดียวกัน Cowriter adjoint เพื่อ Writer ฉันไม่พบคำจำกัดความของ Cowriter ดังนั้นฉันจึงสร้างมันขึ้นมาด้วยการเปรียบเทียบที่แสดงในตาราง:

ข้อความแสดงแทน

{- base, Hackage.category-extras -}
import Control.Comonad
import Data.Monoid
data Cowriter w a = Cowriter (w -> a)
instance Functor (Cowriter w) where
    fmap f (Cowriter g) = Cowriter (f . g)
instance Monoid w => Copointed (Cowriter w) where
    extract (Cowriter g) = g mempty
instance Monoid w => Comonad (Cowriter w) where
    duplicate (Cowriter g) = Cowriter
        (\w' -> Cowriter (\w -> g (w `mappend` w')))

ด้านล่างนี้เป็นคำจำกัดความง่าย ๆ ของ monads เหล่านี้ (co) fr_ob F หมายถึงการทำแผนที่ของ functor F บนวัตถุ fr_mor F หมายถึงการทำแผนที่ของ functor F ในลักษณะสัณฐาน มีหนังสือวัตถุในCw,+^,0^C

  • นักเขียน
    • fr_ob(Writer w)a=a×w
    • fr_mor(Writer w)f=λa0,w2.a0,f w2
    • ηa=λa0.a0,0^
    • μa=λa0,w1,w0.a0,w0+^w1
  • ผู้อ่าน
    • fr_ob(Reader r)a=ra
    • fr_mor(Reader r)f=λg r0.f(g r0)
    • ηa=λa0 r0.a0
    • μa=λf r0.f r0 r0
  • Coreader
    • fr_ob(Coreader r)a=r×a
    • fr_mor(Coreader r)f=λr0,a0.f r0,a0
    • ηa=λr0,a0.a0
    • μa=λr0,a0.r0,r0,a0
  • Cowriter
    • fr_ob(Cowriter w)a=wa
    • fr_mor(Cowriter w)f=λg r0.f(g r0)
    • ηa=λf.f 0^
    • μa=λf w1w0.f(w0+^w1)

The question is that the adjunction in C relates functors, not monads. I do not see how the adjunction implies "Coreader is a comonad" "Reader is a monad" and "Writer is a monad" "Cowriter is a comonad".

Remark. I am struggling to provide more context. It requires some work. Especially, if you require categorical purity and those (co)monads were introduced for programmers. Keep nagging! ;)


Offer: You can take a screenshot of the table, and put the image here.
M.S. Dousti

You should copy the question here.
Dave Clarke

2
people downvoting should post a comment explaining why.
Suresh Venkat

1
@Ohad. I confess that I introduced that change to try to provide the question with more context (as was originally found in the blog post originally referenced). I think beroal should spend more effort making his question self contained, for example, by defining what Reader and Writer and Coreader and Cowriter are in categorical terms or in Haskell or both, rather than assuming that we all know what is being referred to.
Dave Clarke

2
@beroal: What I meant was that, as I don't use Haskell on a day to day basis, parsing the Haskell code and making the transition into CT is non-trivial for me, and perhaps others. By rephrasing the question in purely categorical terms, you are more likely to receive an answer quicker...
Ohad Kammar

คำตอบ:


13

ใช่ถ้าเป็น monad M:CC has a right adjoint N, then N automatically inherits a comonad structure.

CDFun(C,D)CDFunL(C,D)Fun(C,D) on the functors which have right adjoints (in other words, we consider functors CD with right adjoints and arbitrary natural transformations between them). Write FR:DC for the right adjoint of a functor F:CD. Then R:FunL(C,D)Fun(D,C) is a contravariant functor: if α:FG is a natural transformation then there is an induced natural transformation αR:GRFR.

If C=D, then Fun(C,C) has a monoidal structure given by composition and so does FunL(C,D), because the composition of left adjoints is a left adjoint. Specifically, (FG)R=GRFR, so R is an antimonoidal contravariant functor. If you apply R to the structural natural transformations which equip a functor M with the structure of a monad, what you get out is a comonad.


1
And one should mention that some of these functors, for example R is not really a functor but rather something like a pseudo-functor because it typically satisfies functoriality only up to canonical isomorphisms. Nevertheless, the main point is valid.
Andrej Bauer

7

By the way, this:

Let (×) be a product bifunctor in C. As C is CCC, we can curry (×)

is slightly incorrect. For one, the usual terminology would be (if I'm not mistaken) that × is a bifunctor over or on C. "In" typically means constructions using the arrows and objects of a category, whereas functors "on" categories refer to constructions relating multiple categories. And the product bifunctor isn't a construction within a Cartesian category.

And this relates to the larger inaccuracy: the ability to curry the product bifunctor has nothing to do with C being Cartesian closed. Rather, it is possible because Cat, the category of categories (insert caveats) is Cartesian closed. So the currying in question is given by:

HomCat(C×D,E)HomCat(C,ED)

where C×D is a product of categories, and ED is the category of functors F:DE. This works regardless of whether C, D and E are Cartesian closed, though. When we let C=D=E, we get:

×:C×CC
curry×:CCC

But this is merely a special case of:

F:C×DE
curryF:CED

2 Dan Doel: Yes, yes, yes, thanks. I did the mistake while translating from the original post beroal.livejournal.com/23223.html .
beroal

4

Consider the adjunction F,G,ϵ,η. For every such adjunction we have a monad GF,η,GϵF and also a comonad FG,ϵ,FηG. Notably, F and G need not be endofunctors, and in general they aren't (e.g., the list monad is an adjuction between the free and forgetful functors between Set and Mon).

So, what you want to do is take Reader (or Writer) and decompose it into the adjoint functors which give rise to the monad and the corresponding comonad. Which is to say that the connection between Reader and Coreader (or Writer and Cowriter) isn't the one you're looking for.

And it's probably better to think of currying as :hom(×A,=)hom(,=A), i.e. X,Y. {f:X×AY}{f:XYA}. Or if it helps, :hom(×A,=×1)hom(1,=A)


2 wren ng thornton: I am not aware of any defining adjunction for Reader and Writer similar to adjunctions between Set and a category of algebraic structures. Or do you mean that every monad is defined by an adjunction as in "MacLane. Categories for the Working Mathematician. VI. Monads and Algebras. 2. Algebras for a Monad. Theorem 1 (Every monad is defined by its T-algebras)."? Can you be more specific? Actually my question is the conclusion of an attempt to define those (co)monads in elegant words as the list monad is.
beroal

@beroal: I'm pretty sure Reader and Writer aren't adjoint, or at least I've yet to find a way to get the categories to work out for it. No, my point was that monads and comonads arise in "the same way", namely via an adjunction, as described above. I don't have a copy of MacLane, but yes T-algebras are the standard name for the trick above (but then again, all sorts of unrelated things are called "X-algebras", "Y-algebras",...).
wren romano

Which description of the list monad are you trying to match the eloquence of? Given the free monoid functor F:SetMon, the forgetful functor U:MonSet, the unit transformation η:idSetUF, and the counit transformation ϵ:FUidMon you have an adjunction F,U,η,ϵ. Which means you have a monad UF,η,UϵF, namely the list monad in Set. And you get the list comonad in Mon: FU,ϵ,FηU. Eloquent?
wren romano

Functors (Reader a) and (Writer a) are adjoint, and that adjunction gives rise to the (State a) monad.
beroal

"No, my point was that monads and comonads arise in "the same way", namely via an adjunction, as described above". If you get the monad and the comonad from the adjunction between categories Set and Mon, you get the monad on Set and the comonad on Mon — different categories. But Reader and Writer are on the same CCC category.
beroal
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.