ผลรวมของรากที่สองปัญหาขอให้ลำดับสองและของจำนวนเต็มบวกไม่ว่าจะเป็นผลรวมน้อยกว่าเท่ากับหรือมากกว่า กว่าผลรวม{} สถานะความซับซ้อนของปัญหานี้เปิดอยู่ ดูโพสต์นี้สำหรับรายละเอียดเพิ่มเติม ปัญหานี้เกิดขึ้นตามธรรมชาติในเรขาคณิตการคำนวณโดยเฉพาะอย่างยิ่งในปัญหาที่เกี่ยวข้องกับเส้นทางที่สั้นที่สุดของ Euclidean และเป็นสิ่งสำคัญที่ทำให้การถ่ายโอนอัลกอริทึมสำหรับปัญหาเหล่านั้นจาก RAM จริงไปยัง RAM จำนวนเต็มมาตรฐาน
เรียกปัญหาΠ ผลบวกของสแควร์รูทยาก (ตัวย่อΣ√-hard?) ถ้ามีการลดเวลาพหุนามจากผลรวมของปัญหารากที่สองเป็นΠ ไม่ยากที่จะพิสูจน์ว่าปัญหาต่อไปนี้คือผลรวมของสแควร์รูทยาก
เส้นทางที่สั้นที่สุดในกราฟเรขาคณิตแบบยุคลิด 4d
อินสแตนซ์: กราฟซึ่งจุดยอดเป็นจุดในโดยมีขอบถ่วงน้ำหนักโดย Euclidean distane; สองจุดยอดและ
เอาท์พุท: เส้นทางที่สั้นที่สุดจากไปในG
แน่นอนว่าปัญหานี้สามารถแก้ไขได้ในพหุนามในแรมจริงโดยใช้อัลกอริทึมของ Dijkstra แต่การเปรียบเทียบแต่ละครั้งในอัลกอริทึมนั้นจำเป็นต้องแก้ปัญหาผลรวมของสแควร์รูท การลดใช้ความจริงที่ว่าจำนวนเต็มใด ๆ สามารถเขียนเป็นผลรวมของสี่เหลี่ยมที่สมบูรณ์แบบสี่อัน เอาท์พุทของการลดจริง ๆ แล้วเป็นวัฏจักรของจุดยอด
ปัญหาอื่น ๆ คือ sum-of-square-root-hard? ฉันสนใจเป็นพิเศษในปัญหาที่มีการแก้ปัญหาเวลาพหุนามในแรมจริง ดู คำถามก่อนหน้าของฉันสำหรับความเป็นไปได้
ตามที่โรบินแนะนำคำตอบที่น่าเบื่อนั้นน่าเบื่อ สำหรับคลาส X ที่มีความซับซ้อนใด ๆ ที่มีผลรวมของสแควร์รูท (เช่น PSPACE หรือ EXPTIME) ปัญหา X-hard ทุกอันนั้นน่าเบื่ออย่างยิ่ง