คำถามพื้นฐานเกี่ยวกับการขยายทรานซิสเตอร์


17

ใครสามารถอธิบายได้ว่าทรานซิสเตอร์สามารถขยายแรงดันหรือกระแสได้อย่างไร ตามที่ฉันพูดการขยายหมายถึง - คุณส่งอะไรเล็ก ๆ น้อย ๆ ออกมามันใหญ่กว่า พูดเช่นฉันต้องการขยายคลื่นเสียง ฉันกระซิบกับเครื่องขยายเสียงและมันก็พูดออกมาว่าใหญ่กว่า 5 เท่า (ขึ้นอยู่กับปัจจัยของการขยายเสียง)

แต่เมื่อฉันอ่านเกี่ยวกับการกระทำของ Transistor Amplifyingหนังสือข้อความทั้งหมดบอกว่าตั้งแต่การเปลี่ยนแปลงเล็กน้อยใน Base ΔIb แต่การเปลี่ยนแปลงขนาดใหญ่ที่สอดคล้องกันใน Emitter current Δคือมีการขยาย แต่เครื่องขยายเสียงอยู่ที่ไหน สิ่งที่กำลังขยายตามที่ฉันได้กำหนดไว้? ความเข้าใจของฉันเกี่ยวกับการเพิ่มคำผิดหรือไม่? และกระแสจะถูกถ่ายโอนจากพื้นที่ต้านทานต่ำไปยังพื้นที่ต้านทานสูงได้อย่างไร?

ฉันคิดว่าฉันเข้าใจว่าทรานซิสเตอร์นั้นถูกสร้างขึ้นและกระแสไหลอย่างไร ทุกคนสามารถอธิบายการกระทำของการขยายทรานซิสเตอร์อย่างชัดเจนและเชื่อมโยงกับสิ่งที่ฉันเข้าใจเกี่ยวกับการขยาย


@ChrisStratton นี่คือคำถามเกี่ยวกับการต่อสายดินelectronics.stackexchange.com/q/24598/7364
Green Noob

คุณถามตัวเองไหมว่าทำไมหนังสือถึงพูดถึงการเปลี่ยนแปลงของกระแสไฟฟ้าพื้นฐานแทนที่จะเป็น "กระแส"?
0x6d64

@ 0x6d64 คุณมีความประณีตมากกว่านี้หรือไม่?
Green Noob

มีคำตอบที่น่าสงสารอยู่ที่นี่ ความสับสนมากมาย, ทำทรานซิสเตอร์ขยายกระแส, ทำทรานซิสเตอร์ขยายแรงดันไฟฟ้า ฯลฯ
rhody

คำตอบ:


18

ฉันจะเริ่มต้นด้วยคำจำกัดความของการขยาย โดยทั่วไปแล้วการขยายเสียงเป็นเพียงอัตราส่วนระหว่างค่าสองค่า ไม่ได้หมายความว่าค่าเอาต์พุตจะมากกว่าค่าอินพุต (แม้ว่าจะเป็นวิธีที่ใช้บ่อยที่สุด) ไม่สำคัญว่าการเปลี่ยนแปลงปัจจุบันจะใหญ่หรือเล็ก

ตอนนี้เราจะย้ายไปใช้ค่าการขยายทั่วไปที่ใช้:

ที่สำคัญที่สุด (และอีกคนหนึ่งพูดถึงคำถามของคุณเกี่ยว) เป็นβมันถูกกำหนดเป็นβ = ฉันβ , โดยที่ฉันcคือกระแสที่เข้าสู่ตัวสะสมและฉันbคือกระแสเข้าไปในฐาน หากเราจัดเรียงสูตรอีกเล็กน้อยเราจะได้รับIc=βIbซึ่งเป็นสูตรที่ใช้บ่อยที่สุด เนื่องจากสูตรนั้นบางคนบอกว่าทรานซิสเตอร์ "ขยาย" กระแสฐานβ=IcIbIcIbIc=βIb

ทีนี้มันเกี่ยวข้องกับตัวปล่อยกระแสอย่างไร? ดีที่เรายังมีสูตรเมื่อเรารวมสูตรที่มีสูตรที่สองที่เราได้รับβ ฉันB + ฉันB + ฉันE = 0 จากนั้นเราจะได้ตัวส่งกระแสเป็น- ฉันe = β ฉันb + ฉันb = ฉันb ( β + 1 ) (โปรดทราบว่าฉันeIc+Ib+Ie=0βIb+Ib+Ie=0Ie=βIb+Ib=Ib(β+1)Ie เป็นกระแสที่เข้าสู่ตัวปล่อยดังนั้นจึงเป็นค่าลบ)

จากนั้นคุณจะเห็นว่าการใช้เป็นเครื่องมือที่มีประโยชน์ในการคำนวณเราสามารถเห็นความสัมพันธ์ระหว่างกระแสฐานของทรานซิสเตอร์และกระแส emitter ของทรานซิสเตอร์ เนื่องจากในทางปฏิบัติβอยู่ในช่วงร้อยถึงพันเราสามารถพูดได้ว่ากระแสไฟฟ้า "เล็ก" คือ "ขยาย" เป็น "ใหญ่" สะสมกระแสไฟฟ้า (ซึ่งจะทำให้กระแสไฟฟ้าขนาดใหญ่) โปรดทราบว่าฉันไม่ได้พูดเกี่ยวกับ delta ใด ๆ จนกระทั่งตอนนี้ นั่นเป็นเพราะทรานซิสเตอร์ในฐานะองค์ประกอบไม่ต้องการกระแสในการเปลี่ยนแปลง คุณสามารถเชื่อมต่อฐานกับกระแส DC คงที่และทรานซิสเตอร์จะทำงานได้ดี หากต้องการการเปลี่ยนแปลงในปัจจุบันมัน 'ββ

มีค่าอื่นยังใช้และชื่อคือαนี่คือสิ่งที่: α = I cαα=IcIe. When we rearrange that, we can see that Ic=αIe. So α is the value by which the emitter current is amplified in order to produce collector current. In this case, the amplification actually gives us a smaller output (although in practice α is close to 1, something like 0.98 or higher), because as we know, the emitter current going out of the transistor is the sum of the base current and collector current which are going into the transistor.

ทีนี้ฉันจะพูดเกี่ยวกับวิธีที่ทรานซิสเตอร์ขยายแรงดันและกระแส ความลับคือ: ไม่ แรงดันไฟฟ้าหรือเครื่องขยายเสียงในปัจจุบันทำ! แอมป์นั้นเป็นวงจรที่ซับซ้อนกว่าเล็กน้อยซึ่งใช้ประโยชน์จากคุณสมบัติของทรานซิสเตอร์ นอกจากนี้ยังมีโหนดอินพุตและโหนดเอาต์พุต การขยายแรงดันไฟฟ้าคืออัตราส่วนของแรงดันไฟฟ้าระหว่างโหนดเหล่านั้น n การขยายปัจจุบันคืออัตราส่วนของกระแสระหว่างสองโหนดเหล่านี้:Ai=IoutAv=VoutVinAi=IoutIin nเรายังมีเพาเวอร์แอมปลิฟายเออร์ซึ่งเป็นผลคูณของกระแสและแรงดันไฟฟ้า โปรดทราบว่าการขยายสามารถเปลี่ยนแปลงได้ขึ้นอยู่กับโหนดที่เราเลือกเป็นโหนดอินพุตและโหนดเอาต์พุต!

มีค่าที่น่าสนใจอีกสองสามอย่างที่เกี่ยวข้องกับทรานซิสเตอร์ซึ่งคุณสามารถหาได้ที่นี่

So to sum this up: We have transistor which is doing something. In order to safely use transistor, we need to be able to represent what transistor is doing. One of the ways of representing processes happening in the transistor is to use the term "amplification". So using amplification, we can avoid actually understanding what is happening in transistor (if you have any semiconductor physics classes, you'll learn that there) and just have few equations which will be useful for a large number of practical problems.


Thanks a lot for answering my earlier questions. But can you tell me why the author has introduced a 5 Kohm resistance in series while explaining voltage 'amplification'?? & where did he get the 20 ohm input resistance? Link
Green Noob

Does't really answer where the amplification comes from.
rhody

@rhody Back when I was looking at the question, I determined that the main issue is the use of terminology and therefore provided a terminological answer. Since OP already had a referece about transistors, there was no need to go into details explaining what actually happens.
AndrejaKo

It is my understanding that amplification is when you increase the signal strength,which is based on the energy carried by the signal and measured in terms of Power(Watts). So an amplifier increases the power. A "voltage" amplifier boosts the signal voltage without lowering the current and this in turn boosts the output power. A "power" amplifier boosts both the AC voltage and the AC current so there is a significant power gain(more than a voltage amplifier).
Mr X

@Mr X I explicitly disagree with your understanding. Namely, we have the "amplification" as an abstraction tool in general, and then we have practical uses of this tool. I explicitly decided not to try to muddy the water in this answer by referring to the practical uses, because I believe that it's very useful to first understand the abstraction tool on its own.
AndrejaKo

7

Transistor does not amplify. Imagine sound waves hitting a microphone: what happens actually is that the sound signal does not pass into the microphone, but the microphone produces a signal corresponding to the sound signal; It is not the actual signal.

Remember that the actual signals in real world cannot be amplified or attenuated. Can you catch a sound or any other real world signal? No. They are as they are, we can only make a system which can work on the effect of the real world signal; sound waves hit on a microphone, light hits on a camera lens etc.

But when it comes to the case of a transistor, you apply an input signal to the base and you obtain a new signal corresponding to the input signal with greater amplitude in the collector. Keep in mind that this happens because a small change in the input side will correspond to a large change in the output side, due to the variation in the resistance. It is only an effect one to one. The output signal is totally a new signal of a grater amplitude, not the actual signal.


This doesn't answer the question at all.
rhody

Actually the electrical wave and a considerable part of the charge carriers do pass from base to emmiter, hence, we could say the new signal is in part composed by the previous one. But this is quite phylosophical, when for us, signals are voltage levels, measurable, repeatable...
Brethlosze

5

The signal is being amplified. Depending on the design of the transistor amplifier the actual base current may or may not be part of the output current. Don't get hung up on a definition of amplification that requires every input electron to get larger and then pass to the output...


Please explain?
Green Noob

@GreenNoob - most transistor amplifiers have bias currents that ensure the circuit is operating linearly. With just the bias currents present, it will be true that emitter current is greater than base current, but this isn't very interesting since these currents are just constants. The books speak about changes in current b/c the signals we ordinarily think of amplifying are imposed as fluctuations on top of the bias currents.
JustJeff

4

The working principle of a BJT (Bipolar Junction Transistor), which makes it a useful thing, is that it amplifies current. Throw a small current in, get a larger current out. The amplification factor is an important parameter of the transistor, and is called hFE. A general purpose transistor may have an hFE of 100, for instance, sometimes higher. Power transistors have to do it with less, like 20 to 30.
So if I inject a 1 mA current in the base of my general purpose NPN transistor I'll get 100 mA of collector current. That's amplification, right? Current amplification.

How about voltage amplification? Well, let's add a couple of resistors. Resistors are cheap, but if you want to make money you can try to sell them expensive by calling them "voltage-to-current converters" :-).

enter image description here

We've added a base resistor, which will cause a base current of

IB=VB0.7VRB

And we know that the collector current IC is a factor hFE higher, so

IC=hFE(VB0.7V)RB

Resistors are really great things, because next to "voltage-to-current converters" you an also use them as "current-to-voltage converters"! (we can charge even more for them!) Due to Ohm's Law:

VRL=RLIC

and since VC=VCCVRL

we get

VC=VCCRLhFE(VB0.7V)RB

or

VC=hFERLRBVB+(hFERLRB0.7V+VCC)

The term between the brackets is a constant which we're not interested in at the moment. The first term shows that VC is VB multiplied by some factor depending on three constants. Let's use concrete values: 100 for hFE, 10 kΩ for RB and 1 kΩ for RC. Then (again ignoring the constant factor)

VC=hFERLRBVB=1001kΩ10kΩVB=10VB

So the output voltage is 10 times the input voltage plus a constant bias. Looks like we can use the transistor for voltage amplification as well.


1
In the strict physics sense, transistors do not amplify current, since even the bipolar transistor is controlled using the base emitter voltage, but I agree it's a convenient shorthand. amasci.com/amateur/transis.html
Mister Mystère

@MisterMystère: a bipolar transistor in common emitter is controlled by base current, not voltage. It's the base current that causes an X times larger collector current. You're wrong.
Joris Groosman

@JorisGroosman Ever heard of the textbook "Art of Electronics?" They teach bipolar transistors with voltage-input design philosophy, not current input. Author Win Hill specifically points out all the flaws in the hfe-based, current-input viewpoint, and shows how they're solved by seeing BJTs as voltage driven; ruled by the Ebers-Moll equation. He points out that current-input doesn't apply to diff amp, current mirror or cascode. Check out one of his forum responses about BJT voltage input versus current input: cr4.globalspec.com/comment/720374/Re-Voltage-vs-Current
wbeaty

@wbeaty: Yes, I know AoE. Odd thing: since the 1950s engineers have calculated collector current as a function of base current is a gazillion of practical applications, and they all work! Current as a function of base voltage probably doesn't go beyond the blackboard.
Joris Groosman

No,you don't know AOE, since they show why hfe DOESN'T work for analog design. Amps based in hfe will fail if temp drifts a couple of degrees. The authors push the voltage-based BJT design philosophy. As Win Hill points out, hfe doesn't explain voltage-input stages such as emitter-followers or diff amps. Op amps and their voltage inputs are hardly a blackboard-only concept. They worK, and are immune to vast changes in the hfe of the transistors involved. Yes, hfe is a useful concept, but without voltage-based signals and Ebers-Moll, a large part of modern analog design would fail.
wbeaty

3

Amplifiy sound, and you're amplifying the energy-flow: the input watts of sound become larger output watts.

Note that an electrical transformer doesn't amplify. It can step up voltage, but it cant increase the watts.

Transistors (and any sort of valve or switch) can amplify. They do it by using a tiny wattage to control a power supply which can output a huge wattage. The large output comes from the power supply, while the input signal is valving the transistpr on and off.

If you have a giant hydraulic press, you can crush cars by touching a valve switch with your little finger. The valve amplified your finger motion to mash Chevys. But actually it was the hundreds-HP haudraulic supply which provided the increased wattage. With NPNs, same idea. Transistors are valves for flowing charge instead of flowing haudraulic fluid.


Nice explanation... To move it to the electrical domain, we can simply say the transistor is an "electrically-controlled resistor" inserted in series ("rheostat") or in parallel ("shunt") to the load. Thus it forms a voltage or current divider. To be more precise, we can only add that this "resistor" is non-linear, and it is controlled both by the side of the input source and the load. And also, the transistor is a passive, not active device (regarding the power).
Circuit fantasist

From this "energy viewpoint", the transistor does not amplify; contrary, it attenuates the power of the source... it does not produce energy; it consumes energy.
Circuit fantasist

reading all the answers of yours really helps me a lot, especially thanks to @wbeaty, your explaination is realllly nice!

Your car crush analogy is soooo much easier to understand than a water valve. Thanks!
dval

0

What is my understanding is that for a transistor to amplify you need to bias it properly. Forward biasing of BE junction makes it a conducting diode so input resistance is less. Reverse biasing CE junction makes it non conducting diode so output resistance is high. And if Ic is almost equal to Ie then the current causes a low voltage drop at input and large one at output. This is why its called an Amplifier.


0

With a transistor, you can achieve this: Give a small signal(ac) at input, and get a larger valued(higher amplitude) signal at output. But this is not all. You have to give DC supply at collector and base; emitter if required. This is called biasing the dc point. The rms power you get at the output will be less than the dc power you have supplied.

If you want to do analysis, there are two steps involved for any circuit.

  1. DC analysis: don't consider any ac signal. Find out the values of all diode currents based on dc voltage at various nodes(Collector, base , emitter). This is done by using KVL along various loops.

  2. AC model: Image has been taken from the book "Electronic Devices and Circuit Theory
    This makes very clear: what we draw as a circuit v/s what elements are actually present inside. Going further, the diode has forward resistance. So the actual model will be like this:

From DC analysis, you must have found the value of Ie. According to diode theory, Re = (26mV/Ie). Our aim is to find Vout/Vin.
1. Vout will depend on Ic.
2. Ic will depend on Ib.
3. Ib will depend on Vin and Re.
4. Re we have found from DC analysis.

enter image description here In AC analysis, we make all the DC supply to 0V. By looking at this, you can make out that the output signal will be an amplified one, right?

Note: This was just to give you an intuitive idea that amplification does take place. But whether you will get amplification or not depends on whether the transistor is in linear(amplifier), saturation or cut off(switch). Again, what will be amplified(current or voltage) depends on type of configuration. So that all comprises of 3-4 chapters of any standard book on analog theory.

โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.