เราจำเป็นต้องจำไว้ว่าข้อมูลเหล่านี้เป็นตัวอย่างของโดเมน lithologic ที่ไม่ต่อเนื่อง บ่อยครั้งที่ขอบเขตระหว่างสองโดเมนดังกล่าวไม่สามารถระบุได้ในเขตข้อมูลดังนั้นจึงไม่ถูกต้องที่จะคาดหวังว่าสถานที่ตัวอย่างจำนวนมากจะอยู่ในขอบเขตที่แม่นยำ โซลูชันที่ถูกต้องจะเป็นพาร์ติชันของพื้นที่ศึกษาและรูปหลายเหลี่ยมแต่ละอันภายในพาร์ติชันนั้น (และมักจะ) ขยายออกไปนอกสถานที่ของตัวอย่างที่กำหนด ยกเว้นการประมาณน้ำมันดิบกฎนี้ออกวิธีการใด ๆ ที่ใช้สถานที่ตัวอย่างเป็นจุดของรูปหลายเหลี่ยมที่เกิด
สำหรับงานที่มีคุณภาพสูงวิธีที่ดีที่สุดคือการพอดีกับโมเดลเชิงพื้นที่เชิงเส้นทั่วไปสำหรับกระบวนการมัลติโนเมียล นั่นเป็นขั้นตอนที่ต้องใช้ความเชี่ยวชาญและความพยายามอย่างมาก ในฐานะตัวแทนคุณอาจพิจารณาขยายจุดตัวอย่างแต่ละจุดเป็นรูปหลายเหลี่ยมของอิทธิพล (aka Thiessen polygon, Voronoi polygon หรือเซลล์ Dirichlet) การ จำกัด การขยายพื้นที่เป็นความคิดที่ดี สิ่งนี้สามารถทำได้ด้วยหน้ากากตาราง
หากต้องการแสดงตัวอย่างให้พิจารณาชุดข้อมูลที่มีขนาดเล็กกว่านี้ (จาก 14,136 คะแนน) ซึ่งแสดงถึงคลาส lithologic 12 คลาสซึ่งแยกตามสี:
นี่คือรายละเอียดจากศูนย์กลางของกลีบทิศตะวันออกแสดงตำแหน่งที่ผิดปกติของคะแนนและการเปลี่ยนแปลงอย่างรวดเร็วของ lithology ที่นั่น การติดตามสิ่งนี้ด้วยตนเองจะเป็นขั้นตอนที่ยากและไม่เจาะจง:
ฉันประสบความสำเร็จในการขยายตัวโดยการแปลงจุดเหล่านี้เป็นกริด (ประมาณ 800 แถวและ 1,000 คอลัมน์) และคำนวณการจัดสรรแบบยุคลิดโดยใช้หน้ากากที่ จำกัด การคำนวณไปยังดินแดนที่ไม่ใช่ธารน้ำแข็ง (โครงร่างสีในสองตัวเลขถัดไปแตกต่างจากที่หนึ่งก่อนหน้า)
สำหรับการเปรียบเทียบนี่คือแผนที่ lithologic ที่มีรายละเอียดของพื้นที่เดียวกันที่ถูกดึงไปยังสเกลเดียวกันกับสัญลักษณ์ที่เหมือนกัน:
ด้วยชุดข้อมูลที่มีขนาดใหญ่อย่างแท้จริงหรือพื้นที่การศึกษาที่ซับซ้อนมันอาจเป็นไปได้อย่างรวดเร็วที่จะจัดเรียงพื้นที่และดำเนินการตามขั้นตอนนี้แยกกันในแต่ละกระเบื้องเรียงสลับกระเบื้องให้เป็นภาพเดียว เพื่อให้สามารถใช้งานได้กระเบื้องจะต้องเหลื่อมกันเล็กน้อยเพื่อหลีกเลี่ยงผลกระทบจากขอบ
เหตุผลหลักสำหรับการเป็นตัวแทนแรสเตอร์คือ (1) มันง่ายและรวดเร็วในการคำนวณและ (2) การแก้ปัญหาเวกเตอร์ที่แม่นยำนั้นยากที่จะเกิดขึ้น ถ้าคุณลองใช้บัฟเฟอร์, นูนออกมา, ลำเรือเว้าหรืออะไรก็ตามคุณจะพบว่าพวกมันตัดกันซึ่งกันและกันและพวกเขายังคงมีช่องว่าง: กล่าวอีกนัยหนึ่งพวกเขาจะไม่สร้างพาร์ติชันที่สอดคล้องกันของทอพอโลยี
วิธีการแบบเวกเตอร์หนึ่งที่ประสงค์การทำงานคือการคำนวณ จำกัด Voronoi tessellation ของจุด ( วิธีการที่ดีใช้เวลา O (n * บันทึก (n)) เวลาสำหรับ n คะแนน) ตำแหน่งผสานเซลล์ Voronoi ตามคุณลักษณะ lithological ของพวกเขาที่เกี่ยวข้อง จุดจากนั้นแยกหลายรูปหลายเหลี่ยมที่เป็นผลลัพธ์ลงในคอมโพเนนต์ที่เชื่อมต่อ (ถ้าคุณต้องการ) อย่างไรก็ตามหากคุณต้องการเพียงแค่เอาท์พุทแบบเวกเตอร์การจัดกลุ่มผลลัพธ์แรสเตอร์และแปลงให้เป็นรูปแบบเวกเตอร์นั้นง่ายกว่า