เป็นเวลานานแล้ว แต่ฉันก็ประสบปัญหาเดียวกันเช่นกัน และพบคำตอบที่น่าสนใจมากมายที่นี่ ดังนั้นฉันสับสนว่าวิธีการใช้
ในกรณีของการเพิ่มจำนวนมากของแถวให้ฉัน dataframe สนใจในประสิทธิภาพความเร็ว ดังนั้นฉันจึงลองวิธีที่นิยมที่สุด 4 วิธีและตรวจสอบความเร็ว
ปรับปรุงในปี 2019โดยใช้แพ็คเกจใหม่ อัปเดตยังหลังจากความคิดเห็น @FooBar
ผลการดำเนินงานความเร็ว
- ใช้. ผนวก ( คำตอบของ NPE )
- ใช้. loc ( คำตอบของ fred )
- ใช้. loc กับการจัดสรรล่วงหน้า ( คำตอบของ FooBar )
- ใช้ dict และสร้าง DataFrame ในท้ายที่สุด ( คำตอบของ ShikharDua )
ผลลัพธ์ (ในวินาที):
|------------|-------------|-------------|-------------|
| Approach | 1000 rows | 5000 rows | 10 000 rows |
|------------|-------------|-------------|-------------|
| .append | 0.69 | 3.39 | 6.78 |
|------------|-------------|-------------|-------------|
| .loc w/o | 0.74 | 3.90 | 8.35 |
| prealloc | | | |
|------------|-------------|-------------|-------------|
| .loc with | 0.24 | 2.58 | 8.70 |
| prealloc | | | |
|------------|-------------|-------------|-------------|
| dict | 0.012 | 0.046 | 0.084 |
|------------|-------------|-------------|-------------|
ขอบคุณ@krassowskiสำหรับความคิดเห็นที่เป็นประโยชน์ - ฉันได้อัปเดตรหัสแล้ว
ดังนั้นฉันใช้การเพิ่มผ่านพจนานุกรมสำหรับตัวเอง
รหัส:
import pandas as pd
import numpy as np
import time
del df1, df2, df3, df4
numOfRows = 1000
# append
startTime = time.perf_counter()
df1 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows-4):
df1 = df1.append( dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']), ignore_index=True)
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df1.shape)
# .loc w/o prealloc
startTime = time.perf_counter()
df2 = pd.DataFrame(np.random.randint(100, size=(5,5)), columns=['A', 'B', 'C', 'D', 'E'])
for i in range( 1,numOfRows):
df2.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df2.shape)
# .loc with prealloc
df3 = pd.DataFrame(index=np.arange(0, numOfRows), columns=['A', 'B', 'C', 'D', 'E'] )
startTime = time.perf_counter()
for i in range( 1,numOfRows):
df3.loc[i] = np.random.randint(100, size=(1,5))[0]
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df3.shape)
# dict
startTime = time.perf_counter()
row_list = []
for i in range (0,5):
row_list.append(dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E']))
for i in range( 1,numOfRows-4):
dict1 = dict( (a,np.random.randint(100)) for a in ['A','B','C','D','E'])
row_list.append(dict1)
df4 = pd.DataFrame(row_list, columns=['A','B','C','D','E'])
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df4.shape)
PS ฉันเชื่อว่าการรับรู้ของฉันไม่สมบูรณ์แบบและอาจมีการปรับให้เหมาะสมบ้าง