Python มีรายการที่ไม่เปลี่ยนรูปหรือไม่?


93

python มีรายการที่ไม่เปลี่ยนรูปหรือไม่?

สมมติว่าฉันต้องการมีฟังก์ชันการทำงานของคอลเลกชันขององค์ประกอบตามลำดับ แต่ฉันต้องการรับประกันว่าจะไม่เปลี่ยนแปลงสิ่งนี้จะนำไปใช้งานได้อย่างไร? มีการเรียงลำดับรายการ แต่สามารถกลายพันธุ์ได้


4
@ Marcin: นี่คือคำถามลักษณะ FAQ ถามและตอบโดยบุคคลเดียวกัน
RichieHindle

@Marcin: คุณเห็นได้ชัดไม่ได้สังเกตเห็นสหกรณ์ตอบคำถามของเธอเอง
Sven Marnach

2
แรงจูงใจหลักสำหรับประเภทที่ไม่เปลี่ยนรูปใน Python คือสามารถใช้เป็นคีย์พจนานุกรมและเป็นชุดได้
Sven Marnach

16
ขออภัยหากทำให้ใครไม่พอใจที่นี่ ฉันเพียงแค่ค้นหารายการที่ไม่เปลี่ยนรูปใน Google และไม่พบอะไรเลย เมื่อฉันพบว่าสิ่งที่ฉันกำลังมองหาคือทูเปิลฉันจึงประสบปัญหาในการเผยแพร่ที่นี่ เผื่อว่าจะมีใคร "โง่" เหมือนฉัน
cammil

5
ฉันเห็นด้วย. ในการมองย้อนกลับไปมันดูโง่ แต่ไม่ว่าด้วยเหตุผลใดสมองที่โง่เขลาของฉันได้พาฉันไปสู่เส้นทางที่ผิด มีรายการที่ใช้เกือบทั้งหมดและในที่สุดก็ตระหนักว่าฉันต้องการรายการที่ไม่เปลี่ยนรูปฉันจึงถามคำถามที่เป็นธรรมชาติ แม้ว่าฉันจะรู้ดีว่ามีสิ่งมีชีวิตอยู่ แต่ฉันก็ไม่ได้เชื่อมต่อทั้งสอง หากสิ่งนี้ช่วยคนอื่นได้ฉันก็รู้สึกว่านี่ไม่ใช่โพสต์ที่ไร้ประโยชน์ อย่างไรก็ตามหากนี่ไม่ใช่คำตอบที่ถูกต้องสำหรับคำถามง่ายๆนี้นั่นก็เป็นอีกเรื่องหนึ่งโดยสิ้นเชิง
cammil

คำตอบ:


108

ใช่. เรียกว่าtuple.

ดังนั้นแทนที่จะ[1,2]เป็น a listและที่สามารถกลายพันธุ์(1,2)ได้กลับเป็นtupleและไม่สามารถ


ข้อมูลเพิ่มเติม:

องค์ประกอบเดียวtupleไม่สามารถสร้างอินสแตนซ์ได้ด้วยการเขียน(1)คุณต้องเขียน(1,)แทน เนื่องจากล่ามมีการใช้งานอื่น ๆ มากมายสำหรับวงเล็บ

นอกจากนี้คุณยังสามารถใช้วงเล็บพร้อมกันได้: 1,2เหมือนกับ(1,2)

หมายเหตุว่า tuple ไม่ว่ารายการที่ไม่เปลี่ยนรูป คลิกที่นี่เพื่ออ่านเพิ่มเติมเกี่ยวกับความแตกต่างระหว่างรายการและสิ่งที่เพิ่มขึ้น


6
นอกจากนี้หากคุณวางพอยน์เตอร์วัตถุที่เปลี่ยนแปลงไม่ได้โดยเนื้อแท้ในทูเปิล (เช่น([1,2],3)) ทูเปิลจะไม่เปลี่ยนรูปอย่างแท้จริงอีกต่อไปเนื่องจากวัตถุรายการเป็นเพียงตัวชี้ไปยังวัตถุที่เปลี่ยนแปลงไม่ได้และในขณะที่ตัวชี้ไม่เปลี่ยนรูปวัตถุที่อ้างอิงจะไม่เปลี่ยนรูป
ไนซาน

2
นอกจากนี้เมื่อคุณตอบคำถามพื้นฐานดังกล่าวอย่างน้อยก็ให้คำอธิบายเพิ่มเติมบางอย่างเช่นความแตกต่างของประสิทธิภาพ (ทูเพิลเร็วกว่าเล็กน้อย) และ tuples นั้นสามารถใช้เป็นคีย์ dict ในขณะที่รายการทำไม่ได้ ฉันแน่ใจว่ามีความแตกต่างอื่น ๆ อีกมากมายเช่นกัน
BrtH

3
จริง tuple ()ว่างยังสามารถเขียนได้ นั่นเป็นกรณีเดียวที่ต้องใช้วงเล็บ
RemcoGerlich

1
@Kane คำพูดของคุณเป็นจริงอย่างแน่นอนในภาษาที่ใช้งานได้ โดยเฉพาะอย่างยิ่ง(3,4,5)มีความแตกต่างกันมาก TYPE- (int x int x int)-than ซึ่งมีประเภท[3,4,5] (listof int)อย่างไรก็ตามทูเปิลของ python ดูเหมือนจะใกล้เคียงกับรายการที่ไม่เปลี่ยนรูปโดยเฉพาะอย่างยิ่งพวกมันสามารถทำซ้ำได้และดูเหมือนว่าพวกมันสามารถกรองและแมปได้ด้วย
John Clements

1
ทูเปิลไม่ใช่รายการไม่มีพฤติกรรมที่เข้ากันได้และคุณไม่สามารถใช้มันได้หลายรูปแบบ
jeremyjjbrown

7

นี่คือการใช้งาน ImmutableList รายการอ้างอิงจะไม่เปิดเผยในสมาชิกข้อมูลโดยตรงใด ๆ ถึงกระนั้นก็สามารถเข้าถึงได้โดยใช้คุณสมบัติการปิดของฟังก์ชันสมาชิก หากเราปฏิบัติตามหลักการไม่แก้ไขเนื้อหาของการปิดโดยใช้คุณสมบัติข้างต้นการใช้งานนี้จะตอบสนองวัตถุประสงค์ อินสแตนซ์ของคลาส ImmutableList นี้สามารถใช้ได้ทุกที่ที่คาดว่าจะมีรายการหลามปกติ

from functools import reduce

__author__ = 'hareesh'


class ImmutableList:
    """
    An unmodifiable List class which uses a closure to wrap the original list.
    Since nothing is truly private in python, even closures can be accessed and
    modified using the __closure__ member of a function. As, long as this is
    not done by the client, this can be considered as an unmodifiable list.

    This is a wrapper around the python list class
    which is passed in the constructor while creating an instance of this class.
    The second optional argument to the constructor 'copy_input_list' specifies
    whether to make a copy of the input list and use it to create the immutable
    list. To make the list truly immutable, this has to be set to True. The
    default value is False, which makes this a mere wrapper around the input
    list. In scenarios where the input list handle is not available to other
    pieces of code, for modification, this approach is fine. (E.g., scenarios
    where the input list is created as a local variable within a function OR
    it is a part of a library for which there is no public API to get a handle
    to the list).

    The instance of this class can be used in almost all scenarios where a
    normal python list can be used. For eg:
    01. It can be used in a for loop
    02. It can be used to access elements by index i.e. immList[i]
    03. It can be clubbed with other python lists and immutable lists. If
        lst is a python list and imm is an immutable list, the following can be
        performed to get a clubbed list:
        ret_list = lst + imm
        ret_list = imm + lst
        ret_list = imm + imm
    04. It can be multiplied by an integer to increase the size
        (imm * 4 or 4 * imm)
    05. It can be used in the slicing operator to extract sub lists (imm[3:4] or
        imm[:3] or imm[4:])
    06. The len method can be used to get the length of the immutable list.
    07. It can be compared with other immutable and python lists using the
        >, <, ==, <=, >= and != operators.
    08. Existence of an element can be checked with 'in' clause as in the case
        of normal python lists. (e.g. '2' in imm)
    09. The copy, count and index methods behave in the same manner as python
        lists.
    10. The str() method can be used to print a string representation of the
        list similar to the python list.
    """

    @staticmethod
    def _list_append(lst, val):
        """
        Private utility method used to append a value to an existing list and
        return the list itself (so that it can be used in funcutils.reduce
        method for chained invocations.

        @param lst: List to which value is to be appended
        @param val: The value to append to the list
        @return: The input list with an extra element added at the end.

        """
        lst.append(val)
        return lst

    @staticmethod
    def _methods_impl(lst, func_id, *args):
        """
        This static private method is where all the delegate methods are
        implemented. This function should be invoked with reference to the
        input list, the function id and other arguments required to
        invoke the function

        @param list: The list that the Immutable list wraps.

        @param func_id: should be the key of one of the functions listed in the
            'functions' dictionary, within the method.
        @param args: Arguments required to execute the function. Can be empty

        @return: The execution result of the function specified by the func_id
        """

        # returns iterator of the wrapped list, so that for loop and other
        # functions relying on the iterable interface can work.
        _il_iter = lambda: lst.__iter__()
        _il_get_item = lambda: lst[args[0]]  # index access method.
        _il_len = lambda: len(lst)  # length of the list
        _il_str = lambda: lst.__str__()  # string function
        # Following represent the >, < , >=, <=, ==, != operators.
        _il_gt = lambda: lst.__gt__(args[0])
        _il_lt = lambda: lst.__lt__(args[0])
        _il_ge = lambda: lst.__ge__(args[0])
        _il_le = lambda: lst.__le__(args[0])
        _il_eq = lambda: lst.__eq__(args[0])
        _il_ne = lambda: lst.__ne__(args[0])
        # The following is to check for existence of an element with the
        # in clause.
        _il_contains = lambda: lst.__contains__(args[0])
        # * operator with an integer to multiply the list size.
        _il_mul = lambda: lst.__mul__(args[0])
        # + operator to merge with another list and return a new merged
        # python list.
        _il_add = lambda: reduce(
            lambda x, y: ImmutableList._list_append(x, y), args[0], list(lst))
        # Reverse + operator, to have python list as the first operand of the
        # + operator.
        _il_radd = lambda: reduce(
            lambda x, y: ImmutableList._list_append(x, y), lst, list(args[0]))
        # Reverse * operator. (same as the * operator)
        _il_rmul = lambda: lst.__mul__(args[0])
        # Copy, count and index methods.
        _il_copy = lambda: lst.copy()
        _il_count = lambda: lst.count(args[0])
        _il_index = lambda: lst.index(
            args[0], args[1], args[2] if args[2] else len(lst))

        functions = {0: _il_iter, 1: _il_get_item, 2: _il_len, 3: _il_str,
                     4: _il_gt, 5: _il_lt, 6: _il_ge, 7: _il_le, 8: _il_eq,
                     9: _il_ne, 10: _il_contains, 11: _il_add, 12: _il_mul,
                     13: _il_radd, 14: _il_rmul, 15: _il_copy, 16: _il_count,
                     17: _il_index}

        return functions[func_id]()

    def __init__(self, input_lst, copy_input_list=False):
        """
        Constructor of the Immutable list. Creates a dynamic function/closure
        that wraps the input list, which can be later passed to the
        _methods_impl static method defined above. This is
        required to avoid maintaining the input list as a data member, to
        prevent the caller from accessing and modifying it.

        @param input_lst: The input list to be wrapped by the Immutable list.
        @param copy_input_list: specifies whether to clone the input list and
            use the clone in the instance. See class documentation for more
            details.
        @return:
        """

        assert(isinstance(input_lst, list))
        lst = list(input_lst) if copy_input_list else input_lst
        self._delegate_fn = lambda func_id, *args: \
            ImmutableList._methods_impl(lst, func_id, *args)

    # All overridden methods.
    def __iter__(self): return self._delegate_fn(0)

    def __getitem__(self, index): return self._delegate_fn(1, index)

    def __len__(self): return self._delegate_fn(2)

    def __str__(self): return self._delegate_fn(3)

    def __gt__(self, other): return self._delegate_fn(4, other)

    def __lt__(self, other): return self._delegate_fn(5, other)

    def __ge__(self, other): return self._delegate_fn(6, other)

    def __le__(self, other): return self._delegate_fn(7, other)

    def __eq__(self, other): return self._delegate_fn(8, other)

    def __ne__(self, other): return self._delegate_fn(9, other)

    def __contains__(self, item): return self._delegate_fn(10, item)

    def __add__(self, other): return self._delegate_fn(11, other)

    def __mul__(self, other): return self._delegate_fn(12, other)

    def __radd__(self, other): return self._delegate_fn(13, other)

    def __rmul__(self, other): return self._delegate_fn(14, other)

    def copy(self): return self._delegate_fn(15)

    def count(self, value): return self._delegate_fn(16, value)

    def index(self, value, start=0, stop=0):
        return self._delegate_fn(17, value, start, stop)


def main():
    lst1 = ['a', 'b', 'c']
    lst2 = ['p', 'q', 'r', 's']

    imm1 = ImmutableList(lst1)
    imm2 = ImmutableList(lst2)

    print('Imm1 = ' + str(imm1))
    print('Imm2 = ' + str(imm2))

    add_lst1 = lst1 + imm1
    print('Liist + Immutable List: ' + str(add_lst1))
    add_lst2 = imm1 + lst2
    print('Immutable List + List: ' + str(add_lst2))
    add_lst3 = imm1 + imm2
    print('Immutable Liist + Immutable List: ' + str(add_lst3))

    is_in_list = 'a' in lst1
    print("Is 'a' in lst1 ? " + str(is_in_list))

    slice1 = imm1[2:]
    slice2 = imm2[2:4]
    slice3 = imm2[:3]
    print('Slice 1: ' + str(slice1))
    print('Slice 2: ' + str(slice2))
    print('Slice 3: ' + str(slice3))

    imm1_times_3 = imm1 * 3
    print('Imm1 Times 3 = ' + str(imm1_times_3))
    three_times_imm2 = 3 * imm2
    print('3 Times Imm2 = ' + str(three_times_imm2))

    # For loop
    print('Imm1 in For Loop: ', end=' ')
    for x in imm1:
        print(x, end=' ')
    print()

    print("3rd Element in Imm1: '" + imm1[2] + "'")

    # Compare lst1 and imm1
    lst1_eq_imm1 = lst1 == imm1
    print("Are lst1 and imm1 equal? " + str(lst1_eq_imm1))

    imm2_eq_lst1 = imm2 == lst1
    print("Are imm2 and lst1 equal? " + str(imm2_eq_lst1))

    imm2_not_eq_lst1 = imm2 != lst1
    print("Are imm2 and lst1 different? " + str(imm2_not_eq_lst1))

    # Finally print the immutable lists again.
    print("Imm1 = " + str(imm1))
    print("Imm2 = " + str(imm2))

    # The following statemetns will give errors.
    # imm1[3] = 'h'
    # print(imm1)
    # imm1.append('d')
    # print(imm1)

if __name__ == '__main__':
    main()

6

คุณสามารถจำลองรายการที่เชื่อมโยงเดี่ยวแบบลิสป์ที่ไม่เปลี่ยนรูปได้โดยใช้ทูเพิลสององค์ประกอบ (หมายเหตุ: สิ่งนี้แตกต่างจากคำตอบทูเพิลองค์ประกอบใด ๆซึ่งสร้างทูเพิลที่มีความยืดหยุ่นน้อยกว่ามาก):

nil = ()
cons = lambda ele, l: (ele, l)

เช่นสำหรับรายการ[1, 2, 3]คุณจะมีสิ่งต่อไปนี้:

l = cons(1, cons(2, cons(3, nil))) # (1, (2, (3, ())))

มาตรฐานcarและcdrฟังก์ชันของคุณตรงไปตรงมา:

car = lambda l: l[0]
cdr = lambda l: l[1]

เนื่องจากรายการนี้เชื่อมโยงแบบเอกเทศการต่อท้ายจึงเป็น O (1) เนื่องจากรายการนี้ไม่เปลี่ยนรูปหากองค์ประกอบพื้นฐานในรายการไม่เปลี่ยนรูปด้วยคุณสามารถแชร์รายการย่อยใด ๆ เพื่อนำกลับมาใช้ใหม่ในรายการอื่นได้อย่างปลอดภัย


การใช้งานนี้มีความยืดหยุ่นมากกว่า tuple ดั้งเดิม (a, b, c) อย่างไร
แท้จริง

@Literal คุณสามารถนำหน้ารายการที่เชื่อมโยงแบบเดี่ยวได้ซึ่งแตกต่างจากทูเปิลทั่วไปซึ่งถูกตรึงไว้ นี่คือสิ่งที่ทำให้พวกเขามีความหลากหลายมากขึ้นและเป็นหลักในภาษาโปรแกรมที่ใช้งานได้
kevinji

ขอบคุณสำหรับคำตอบของคุณ ฉันยังคงพยายามทำความเข้าใจประโยชน์ของการใช้งานนี้เนื่องจากฉันยังสามารถเพิ่มส่วนหน้าขององค์ประกอบโดยการสร้างอินสแตนซ์ทูเพิลใหม่: (z,) + (a, b, c) เป็นเรื่องของประสิทธิภาพหรือไม่?
แท้จริง

4

แต่ถ้ามีทูเพิลของอาร์เรย์และทูเพิลก็สามารถแก้ไขอาร์เรย์ภายในทูเปิลได้

>>> a
([1, 2, 3], (4, 5, 6))

>>> a[0][0] = 'one'

>>> a
(['one', 2, 3], (4, 5, 6))

9
ไม่มีสิ่งใดเป็นคอลเล็กชันที่ทำให้เนื้อหาไม่เปลี่ยนรูปได้เพราะคุณต้องการวิธีทำสำเนาวัตถุที่ไม่เปลี่ยนรูป ในการทำเช่นนั้นคุณจะต้องคัดลอกคลาสที่ออบเจ็กต์เหล่านั้นเป็นของและแม้แต่คลาสในตัวที่พวกเขาอ้างอิง และถึงกระนั้นวัตถุก็สามารถอ้างถึงระบบไฟล์หรือเครือข่ายหรืออย่างอื่นที่จะเปลี่ยนแปลงได้เสมอ ดังนั้นเนื่องจากเราไม่สามารถสร้างวัตถุที่ไม่เปลี่ยนรูปได้ตามอำเภอใจเราจึงต้องพอใจกับคอลเลกชันของวัตถุที่เปลี่ยนแปลงไม่ได้
Jack O'Connor

1
@ JackO'Connor ไม่เห็นด้วยอย่างยิ่ง ทุกอย่างขึ้นอยู่กับว่าคุณสร้างแบบจำลองโลกอย่างไร: ความสามารถในการเปลี่ยนแปลงภายนอกสามารถสร้างแบบจำลองได้เสมอเมื่อสถานะที่เปลี่ยนแปลงไปตามเวลาและแทนที่จะรักษาสถานะที่เปลี่ยนแปลงได้เพียงสถานะเดียวฉันสามารถเลือกอ้างถึง s_t ซึ่งไม่เปลี่ยนรูปได้เสมอ "คอลเล็กชันวัตถุที่ไม่เปลี่ยนรูปไม่เปลี่ยนรูป" <- ดู Huskell, Scala และภาษาโปรแกรมที่ใช้งานได้อื่น ๆ ก่อนที่ฉันจะเริ่มเรียนรู้ Python ฉันเคยเชื่อว่า Python รองรับการไม่เปลี่ยนรูปและ fp อย่างเต็มที่จากสิ่งที่ฉันได้ยินจากผู้อื่น แต่ปรากฎว่าไม่เป็นความจริง
Kane

ฉันควรจะบอกว่าไม่มีสิ่งนั้นใน Python จริงๆ ความไม่เปลี่ยนรูปของ Python ขึ้นอยู่กับโปรแกรมเมอร์ที่เกี่ยวข้องกับอนุสัญญา (เช่น_private_variables) แทนที่จะบังคับใช้จากล่าม
Jack O'Connor

1
ภาษาเช่น Haskell ให้การรับประกันมากกว่าแม้ว่าโปรแกรมเมอร์ต้องการที่จะชั่วร้ายจริง ๆ พวกเขายังสามารถเขียน/proc/#/memหรือเชื่อมโยงกับไลบรารีที่ไม่ปลอดภัยหรืออะไรก็ตามที่จะทำลายแบบจำลอง
Jack O'Connor

1

List และ Tuple มีความแตกต่างในรูปแบบการทำงาน

ใน LIST เราสามารถทำการเปลี่ยนแปลงหลังจากสร้างได้ แต่ถ้าคุณต้องการลำดับที่เรียงลำดับซึ่งจะไม่มีการเปลี่ยนแปลงใด ๆ ในอนาคตคุณสามารถใช้ TUPLE ได้

ข้อมูลเพิ่มเติม::

 1) the LIST is mutable that means you can make changes in it after its creation
 2) In Tuple, we can not make changes once it created
 3) the List syntax is
           abcd=[1,'avn',3,2.0]
 4) the syntax for Tuple is 
           abcd=(1,'avn',3,2.0) 
      or   abcd= 1,'avn',3,2.0 it is also correct

-1

แทนที่จะใช้ทูเปิลคุณสามารถใช้ Frozenset frozenset สร้างชุดที่ไม่เปลี่ยนรูป คุณสามารถใช้ list เป็นสมาชิกของ frozenset และเข้าถึงทุกองค์ประกอบของรายการภายใน frozenset โดยใช้ single for loop


3
frozenset ต้องการให้สมาชิกชุดนั้นสามารถแฮชได้ซึ่งรายการไม่ใช่
matias elgart
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.