std :: function ใช้งานอย่างไร?


102

ตามแหล่งที่มาที่ฉันพบนิพจน์แลมบ์ดาถูกนำไปใช้โดยคอมไพเลอร์ที่สร้างคลาสที่มีตัวดำเนินการเรียกใช้ฟังก์ชันมากเกินไปและตัวแปรที่อ้างอิงเป็นสมาชิก นี้แสดงให้เห็นว่าขนาดของการแสดงออกแลมบ์ดาแตกต่างกันไปและได้รับการอ้างอิงตัวแปรพอที่ขนาดอาจจะมีขนาดใหญ่โดยพลการ

std::functionควรจะมีขนาดคงที่แต่ก็จะต้องสามารถที่จะตัดชนิดของ callables ใด ๆ รวมทั้ง lambdas ชนิดเดียวกันใด ๆ มีการใช้งานอย่างไร? หากstd::functionใช้ตัวชี้ไปยังเป้าหมายภายในจะเกิดอะไรขึ้นเมื่อstd::functionอินสแตนซ์ถูกคัดลอกหรือย้าย มีการจัดสรรฮีปที่เกี่ยวข้องหรือไม่?


2
ฉันดูการใช้งาน gcc / stdlib std::functionในขณะที่ย้อนกลับไป โดยพื้นฐานแล้วมันเป็นคลาสจัดการสำหรับวัตถุหลายชนิด ชั้นมาของชั้นฐานภายในจะสร้างไว้เพื่อเก็บพารามิเตอร์จัดสรรในกอง - แล้วตัวชี้ไปนี้จะจัดขึ้นเป็น subobject std::functionของ ฉันเชื่อว่ามันใช้การนับอ้างอิงstd::shared_ptrเพื่อจัดการการคัดลอกและการเคลื่อนย้าย
Andrew Tomazos

4
โปรดทราบว่าการใช้งานอาจใช้เวทมนตร์กล่าวคือต้องอาศัยส่วนขยายของคอมไพเลอร์ซึ่งคุณไม่สามารถใช้ได้ ในความเป็นจริงสิ่งนี้จำเป็นสำหรับลักษณะบางประเภท โดยเฉพาะอย่างยิ่งแทรมโพลีนเป็นเทคนิคที่รู้จักกันดีซึ่งไม่มีอยู่ใน C ++ มาตรฐาน
MSalters

คำตอบ:


81

การนำไปใช้std::functionอาจแตกต่างจากการนำไปใช้งานอื่น แต่แนวคิดหลักคือการใช้การลบประเภท ในขณะที่มีหลายวิธีในการดำเนินการคุณสามารถจินตนาการได้ว่าโซลูชันที่ไม่สำคัญ (ไม่เหมาะสมที่สุด) อาจเป็นเช่นนี้ (ทำให้ง่ายขึ้นสำหรับกรณีเฉพาะstd::function<int (double)>เพื่อความเรียบง่าย):

struct callable_base {
   virtual int operator()(double d) = 0;
   virtual ~callable_base() {}
};
template <typename F>
struct callable : callable_base {
   F functor;
   callable(F functor) : functor(functor) {}
   virtual int operator()(double d) { return functor(d); }
};
class function_int_double {
   std::unique_ptr<callable_base> c;
public:
   template <typename F>
   function(F f) {
      c.reset(new callable<F>(f));
   }
   int operator()(double d) { return c(d); }
// ...
};

ในวิธีง่ายๆนี้functionวัตถุจะจัดเก็บเพียงunique_ptrชนิดฐาน สำหรับ functor แต่ละตัวที่ใช้กับfunctionประเภทใหม่ที่ได้มาจากฐานจะถูกสร้างขึ้นและอ็อบเจ็กต์ประเภทนั้นจะสร้างอินสแตนซ์แบบไดนามิก std::functionวัตถุอยู่เสมอขนาดเดียวกันและจะจัดสรรพื้นที่ตามความจำเป็นสำหรับ functors แตกต่างกันในกอง

ในชีวิตจริงมีการเพิ่มประสิทธิภาพที่แตกต่างกันซึ่งให้ข้อดีด้านประสิทธิภาพ แต่จะทำให้คำตอบซับซ้อน ประเภทสามารถใช้การเพิ่มประสิทธิภาพออบเจ็กต์ขนาดเล็กการจัดส่งแบบไดนามิกสามารถถูกแทนที่ด้วยตัวชี้ฟังก์ชันอิสระที่ใช้ functor เป็นอาร์กิวเมนต์เพื่อหลีกเลี่ยงทิศทางหนึ่งระดับ ... แต่โดยพื้นฐานแล้วแนวคิดก็เหมือนกัน


เกี่ยวกับปัญหาของการทำสำเนาของการstd::functionทำงานการทดสอบอย่างรวดเร็วระบุว่าสำเนาของวัตถุที่เรียกได้ภายในเสร็จสิ้นแล้วแทนที่จะแบ่งปันสถานะ

// g++4.8
int main() {
   int value = 5;
   typedef std::function<void()> fun;
   fun f1 = [=]() mutable { std::cout << value++ << '\n' };
   fun f2 = f1;
   f1();                    // prints 5
   fun f3 = f1;
   f2();                    // prints 5
   f3();                    // prints 6 (copy after first increment)
}

การทดสอบบ่งชี้ว่าf2ได้รับสำเนาของเอนทิตีที่เรียกได้แทนที่จะเป็นข้อมูลอ้างอิง หากเอนทิตีที่เรียกได้ถูกแชร์โดยstd::function<>อ็อบเจ็กต์อื่นผลลัพธ์ของโปรแกรมจะเป็น 5, 6, 7


@Cole "Cole9" Johnson เดาว่าเขาเขียนเอง
aaronman

8
@Cole "Cole9" Johnson: นี่เป็นการย่อโค้ดจริงมากเกินไปฉันเพิ่งพิมพ์ลงในเบราว์เซอร์ดังนั้นจึงอาจพิมพ์ผิดและ / หรือรวบรวมไม่สำเร็จด้วยเหตุผลที่แตกต่างกัน รหัสในคำตอบมีไว้เพื่อแสดงให้เห็นว่าการลบประเภทเป็นอย่างไร / สามารถใช้งานได้ซึ่งเห็นได้ชัดว่าไม่ใช่รหัสคุณภาพการผลิต
David Rodríguez - dribeas

2
@MooingDuck: ฉันเชื่อว่า lambdas สามารถทำสำเนาได้ (5.1.2 / 19) แต่นั่นไม่ใช่คำถาม แต่ความหมายของstd::functionจะถูกต้องหรือไม่หากคัดลอกวัตถุภายในและฉันไม่คิดว่าจะเป็นเช่นนั้น (ลองนึกถึงแลมบ์ดาที่รวบรวมค่าและเปลี่ยนแปลงได้เก็บไว้ใน a std::functionหากสถานะฟังก์ชันถูกคัดลอกจำนวนสำเนาstd::functionภายในอัลกอริทึมมาตรฐานอาจส่งผลให้ได้ผลลัพธ์ที่แตกต่างกันซึ่งไม่ต้องการ
David Rodríguez - dribeas

1
@ MiklósHomolya: ฉันทดสอบด้วย g ++ 4.8 และการใช้งานจะคัดลอกสถานะภายใน หากเอนทิตีที่เรียกได้มีขนาดใหญ่พอที่จะต้องมีการจัดสรรแบบไดนามิกสำเนาของสิ่งstd::functionนั้นจะทริกเกอร์การจัดสรร
David Rodríguez - dribeas

4
@ DavidRodríguez-dribeas สภาวะที่ใช้ร่วมกันจะไม่สามารถต้านทานได้เนื่องจากการเพิ่มประสิทธิภาพออบเจ็กต์ขนาดเล็กจะหมายความว่าคุณเปลี่ยนจากสถานะที่ใช้ร่วมกันเป็นสถานะที่ไม่ใช้ร่วมกันที่เกณฑ์ขนาดที่กำหนดของคอมไพเลอร์และเวอร์ชันคอมไพเลอร์ (เนื่องจากการเพิ่มประสิทธิภาพออบเจ็กต์ขนาดเล็กจะบล็อกสถานะที่ใช้ร่วมกัน) ดูเหมือนจะเป็นปัญหา
Yakk - Adam Nevraumont

24

คำตอบจาก @David Rodríguez - dribeas เหมาะสำหรับการสาธิตการลบประเภท แต่ยังไม่ดีพอเนื่องจาก type-erasure ยังรวมถึงวิธีการคัดลอกประเภท (ในคำตอบนั้นวัตถุฟังก์ชันจะไม่สามารถคัดลอกได้) พฤติกรรมเหล่านั้นจะถูกเก็บไว้ในfunctionวัตถุด้วยนอกเหนือจากข้อมูล functor

เคล็ดลับที่ใช้ในการใช้งาน STL จาก Ubuntu 14.04 gcc 4.8 คือการเขียนฟังก์ชันทั่วไปหนึ่งฟังก์ชันเชี่ยวชาญกับประเภท functor ที่เป็นไปได้แต่ละประเภทและส่งเป็นประเภทตัวชี้ฟังก์ชันสากล ดังนั้นข้อมูลประเภทจะถูกลบ

ฉันได้สร้างเวอร์ชันที่เรียบง่ายขึ้นแล้ว หวังว่ามันจะช่วยได้

#include <iostream>
#include <memory>

template <typename T>
class function;

template <typename R, typename... Args>
class function<R(Args...)>
{
    // function pointer types for the type-erasure behaviors
    // all these char* parameters are actually casted from some functor type
    typedef R (*invoke_fn_t)(char*, Args&&...);
    typedef void (*construct_fn_t)(char*, char*);
    typedef void (*destroy_fn_t)(char*);

    // type-aware generic functions for invoking
    // the specialization of these functions won't be capable with
    //   the above function pointer types, so we need some cast
    template <typename Functor>
    static R invoke_fn(Functor* fn, Args&&... args)
    {
        return (*fn)(std::forward<Args>(args)...);
    }

    template <typename Functor>
    static void construct_fn(Functor* construct_dst, Functor* construct_src)
    {
        // the functor type must be copy-constructible
        new (construct_dst) Functor(*construct_src);
    }

    template <typename Functor>
    static void destroy_fn(Functor* f)
    {
        f->~Functor();
    }

    // these pointers are storing behaviors
    invoke_fn_t invoke_f;
    construct_fn_t construct_f;
    destroy_fn_t destroy_f;

    // erase the type of any functor and store it into a char*
    // so the storage size should be obtained as well
    std::unique_ptr<char[]> data_ptr;
    size_t data_size;
public:
    function()
        : invoke_f(nullptr)
        , construct_f(nullptr)
        , destroy_f(nullptr)
        , data_ptr(nullptr)
        , data_size(0)
    {}

    // construct from any functor type
    template <typename Functor>
    function(Functor f)
        // specialize functions and erase their type info by casting
        : invoke_f(reinterpret_cast<invoke_fn_t>(invoke_fn<Functor>))
        , construct_f(reinterpret_cast<construct_fn_t>(construct_fn<Functor>))
        , destroy_f(reinterpret_cast<destroy_fn_t>(destroy_fn<Functor>))
        , data_ptr(new char[sizeof(Functor)])
        , data_size(sizeof(Functor))
    {
        // copy the functor to internal storage
        this->construct_f(this->data_ptr.get(), reinterpret_cast<char*>(&f));
    }

    // copy constructor
    function(function const& rhs)
        : invoke_f(rhs.invoke_f)
        , construct_f(rhs.construct_f)
        , destroy_f(rhs.destroy_f)
        , data_size(rhs.data_size)
    {
        if (this->invoke_f) {
            // when the source is not a null function, copy its internal functor
            this->data_ptr.reset(new char[this->data_size]);
            this->construct_f(this->data_ptr.get(), rhs.data_ptr.get());
        }
    }

    ~function()
    {
        if (data_ptr != nullptr) {
            this->destroy_f(this->data_ptr.get());
        }
    }

    // other constructors, from nullptr, from function pointers

    R operator()(Args&&... args)
    {
        return this->invoke_f(this->data_ptr.get(), std::forward<Args>(args)...);
    }
};

// examples
int main()
{
    int i = 0;
    auto fn = [i](std::string const& s) mutable
    {
        std::cout << ++i << ". " << s << std::endl;
    };
    fn("first");                                   // 1. first
    fn("second");                                  // 2. second

    // construct from lambda
    ::function<void(std::string const&)> f(fn);
    f("third");                                    // 3. third

    // copy from another function
    ::function<void(std::string const&)> g(f);
    f("forth - f");                                // 4. forth - f
    g("forth - g");                                // 4. forth - g

    // capture and copy non-trivial types like std::string
    std::string x("xxxx");
    ::function<void()> h([x]() { std::cout << x << std::endl; });
    h();

    ::function<void()> k(h);
    k();
    return 0;
}

นอกจากนี้ยังมีการเพิ่มประสิทธิภาพบางอย่างในเวอร์ชัน STL

  • construct_fและdestroy_fมีการผสมลงในตัวชี้ฟังก์ชันหนึ่ง (มีพารามิเตอร์เพิ่มเติมที่บอกว่าจะทำอย่างไร) ให้ประหยัดไบต์บาง
  • พอยน์เตอร์ดิบใช้เพื่อจัดเก็บอ็อบเจ็กต์ functor พร้อมกับตัวชี้ฟังก์ชันใน a unionดังนั้นเมื่อfunctionอ็อบเจ็กต์ถูกสร้างจากตัวชี้ฟังก์ชันอ็อบเจ็กต์จะถูกจัดเก็บโดยตรงในพื้นที่unionแทนที่จะเป็นฮีป

บางทีการดำเนิน STL ไม่ได้เป็นทางออกที่ดีที่สุดเท่าที่ผมเคยได้ยินเกี่ยวกับการดำเนินงานได้เร็วขึ้น อย่างไรก็ตามฉันเชื่อว่ากลไกพื้นฐานนั้นเหมือนกัน


20

สำหรับอาร์กิวเมนต์บางประเภท ("ถ้าเป้าหมายของ f เป็นวัตถุที่เรียกได้ซึ่งส่งผ่านreference_wrapperหรือตัวชี้ฟังก์ชัน") ตัวstd::functionสร้างของไม่อนุญาตข้อยกเว้นใด ๆ ดังนั้นการใช้หน่วยความจำแบบไดนามิกจึงไม่เป็นปัญหา ในกรณีนี้ข้อมูลทั้งหมดจะต้องถูกจัดเก็บไว้ภายในstd::functionวัตถุโดยตรง

ในกรณีทั่วไป (รวมถึงเคสแลมบ์ดา) โดยใช้หน่วยความจำแบบไดนามิก (ผ่านตัวจัดสรรมาตรฐานหรือตัวจัดสรรที่ส่งผ่านไปยังตัวstd::functionสร้าง) จะได้รับอนุญาตเมื่อการใช้งานเห็นสมควร มาตรฐานแนะนำให้ใช้งานอย่าใช้หน่วยความจำแบบไดนามิกหากสามารถหลีกเลี่ยงได้ แต่อย่างที่คุณพูดถูกต้องถ้าวัตถุฟังก์ชัน (ไม่ใช่std::functionวัตถุ แต่เป็นวัตถุที่ห่อหุ้มอยู่ภายใน) มีขนาดใหญ่พอจะไม่มีทางป้องกันได้ เนื่องจากstd::functionมีขนาดคงที่

สิทธิ์ในการโยนข้อยกเว้นนี้มอบให้กับทั้งตัวสร้างปกติและตัวสร้างการคัดลอกซึ่งค่อนข้างจะอนุญาตให้มีการจัดสรรหน่วยความจำแบบไดนามิกอย่างชัดเจนในระหว่างการคัดลอกด้วย สำหรับการเคลื่อนไหวไม่มีเหตุผลว่าทำไมหน่วยความจำแบบไดนามิกจึงจำเป็น ดูเหมือนว่ามาตรฐานจะไม่ได้ห้ามอย่างชัดเจนและอาจไม่สามารถทำได้หากการเคลื่อนไหวอาจเรียกตัวสร้างการย้ายของประเภทของวัตถุที่ห่อหุ้ม แต่คุณควรจะสามารถสันนิษฐานได้ว่าหากทั้งการนำไปใช้งานและวัตถุของคุณมีความสมเหตุสมผลการเคลื่อนย้ายจะไม่ก่อให้เกิด การจัดสรรใด ๆ


0

@neuront ให้คำตอบที่แน่นอนเทคนิคต้องใช้เทคนิคใหม่ในการจัดวาง ฯลฯ รหัสจาก GNU std :: function

// Implementation of std::function -*- C++ -*-

// Copyright (C) 2004-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/bits/std_function.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{functional}
 */

#ifndef _GLIBCXX_STD_FUNCTION_H
#define _GLIBCXX_STD_FUNCTION_H 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#if __cpp_rtti
# include <typeinfo>
#endif
#include <bits/stl_function.h>
#include <bits/invoke.h>
#include <bits/refwrap.h>
#include <bits/functexcept.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *  @ingroup exceptions
   */
  class bad_function_call : public std::exception
  {
  public:
    virtual ~bad_function_call() noexcept;

    const char* what() const noexcept;
  };

  /**
   *  Trait identifying "location-invariant" types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Trivially copyable types are location-invariant and users can
   *  specialize this trait for other types.
   */
  template<typename _Tp>
    struct __is_location_invariant
    : is_trivially_copyable<_Tp>::type
    { };

  class _Undefined_class;

  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };

  union [[gnu::may_alias]] _Any_data
  {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp>
      _Tp&
      _M_access()
      { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp>
      const _Tp&
      _M_access() const
      { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };

  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };

  // Simple type wrapper that helps avoid annoying const problems
  // when casting between void pointers and pointers-to-pointers.
  template<typename _Tp>
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }

      _Tp __value;
    };

  template<typename _Tp>
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
    : __is_location_invariant<_Tp>
    { };

  template<typename _Signature>
    class function;

  /// Base class of all polymorphic function object wrappers.
  class _Function_base
  {
  public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
      class _Base_manager
      {
      protected:
    static const bool __stored_locally =
    (__is_location_invariant<_Functor>::value
     && sizeof(_Functor) <= _M_max_size
     && __alignof__(_Functor) <= _M_max_align
     && (_M_max_align % __alignof__(_Functor) == 0));

    typedef integral_constant<bool, __stored_locally> _Local_storage;

    // Retrieve a pointer to the function object
    static _Functor*
    _M_get_pointer(const _Any_data& __source)
    {
      const _Functor* __ptr =
        __stored_locally? std::__addressof(__source._M_access<_Functor>())
        /* have stored a pointer */ : __source._M_access<_Functor*>();
      return const_cast<_Functor*>(__ptr);
    }

    // Clone a location-invariant function object that fits within
    // an _Any_data structure.
    static void
    _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
    {
      ::new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
    }

    // Clone a function object that is not location-invariant or
    // that cannot fit into an _Any_data structure.
    static void
    _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
    {
      __dest._M_access<_Functor*>() =
        new _Functor(*__source._M_access<_Functor*>());
    }

    // Destroying a location-invariant object may still require
    // destruction.
    static void
    _M_destroy(_Any_data& __victim, true_type)
    {
      __victim._M_access<_Functor>().~_Functor();
    }

    // Destroying an object located on the heap.
    static void
    _M_destroy(_Any_data& __victim, false_type)
    {
      delete __victim._M_access<_Functor*>();
    }

      public:
    static bool
    _M_manager(_Any_data& __dest, const _Any_data& __source,
           _Manager_operation __op)
    {
      switch (__op)
        {
#if __cpp_rtti
        case __get_type_info:
          __dest._M_access<const type_info*>() = &typeid(_Functor);
          break;
#endif
        case __get_functor_ptr:
          __dest._M_access<_Functor*>() = _M_get_pointer(__source);
          break;

        case __clone_functor:
          _M_clone(__dest, __source, _Local_storage());
          break;

        case __destroy_functor:
          _M_destroy(__dest, _Local_storage());
          break;
        }
      return false;
    }

    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f)
    { _M_init_functor(__functor, std::move(__f), _Local_storage()); }

    template<typename _Signature>
      static bool
      _M_not_empty_function(const function<_Signature>& __f)
      { return static_cast<bool>(__f); }

    template<typename _Tp>
      static bool
      _M_not_empty_function(_Tp* __fp)
      { return __fp != nullptr; }

    template<typename _Class, typename _Tp>
      static bool
      _M_not_empty_function(_Tp _Class::* __mp)
      { return __mp != nullptr; }

    template<typename _Tp>
      static bool
      _M_not_empty_function(const _Tp&)
      { return true; }

      private:
    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
    { ::new (__functor._M_access()) _Functor(std::move(__f)); }

    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
    { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
      };

    _Function_base() : _M_manager(nullptr) { }

    ~_Function_base()
    {
      if (_M_manager)
    _M_manager(_M_functor, _M_functor, __destroy_functor);
    }

    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
                  _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
  };

  template<typename _Signature, typename _Functor>
    class _Function_handler;

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

    public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    return (*_Base::_M_get_pointer(__functor))(
        std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    (*_Base::_M_get_pointer(__functor))(
        std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename _Res,
       typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
    {
      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
    _Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    return std::__invoke(_Base::_M_get_pointer(__functor)->__value,
                 std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
    : public _Function_base::_Base_manager<
         _Simple_type_wrapper< _Member _Class::* > >
    {
      typedef _Member _Class::* _Functor;
      typedef _Simple_type_wrapper<_Functor> _Wrapper;
      typedef _Function_base::_Base_manager<_Wrapper> _Base;

    public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
         _Manager_operation __op)
      {
    switch (__op)
      {
#if __cpp_rtti
      case __get_type_info:
        __dest._M_access<const type_info*>() = &typeid(_Functor);
        break;
#endif
      case __get_functor_ptr:
        __dest._M_access<_Functor*>() =
          &_Base::_M_get_pointer(__source)->__value;
        break;

      default:
        _Base::_M_manager(__dest, __source, __op);
      }
    return false;
      }

      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    std::__invoke(_Base::_M_get_pointer(__functor)->__value,
              std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _From, typename _To>
    using __check_func_return_type
      = __or_<is_void<_To>, is_same<_From, _To>, is_convertible<_From, _To>>;

  /**
   *  @brief Primary class template for std::function.
   *  @ingroup functors
   *
   *  Polymorphic function wrapper.
   */
  template<typename _Res, typename... _ArgTypes>
    class function<_Res(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
      private _Function_base
    {
      template<typename _Func,
           typename _Res2 = typename result_of<_Func&(_ArgTypes...)>::type>
    struct _Callable : __check_func_return_type<_Res2, _Res> { };

      // Used so the return type convertibility checks aren't done when
      // performing overload resolution for copy construction/assignment.
      template<typename _Tp>
    struct _Callable<function, _Tp> : false_type { };

      template<typename _Cond, typename _Tp>
    using _Requires = typename enable_if<_Cond::value, _Tp>::type;

    public:
      typedef _Res result_type;

      // [3.7.2.1] construct/copy/destroy

      /**
       *  @brief Default construct creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function() noexcept
      : _Function_base() { }

      /**
       *  @brief Creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function(nullptr_t) noexcept
      : _Function_base() { }

      /**
       *  @brief %Function copy constructor.
       *  @param __x A %function object with identical call signature.
       *  @post @c bool(*this) == bool(__x)
       *
       *  The newly-created %function contains a copy of the target of @a
       *  __x (if it has one).
       */
      function(const function& __x);

      /**
       *  @brief %Function move constructor.
       *  @param __x A %function object rvalue with identical call signature.
       *
       *  The newly-created %function contains the target of @a __x
       *  (if it has one).
       */
      function(function&& __x) noexcept : _Function_base()
      {
    __x.swap(*this);
      }

      /**
       *  @brief Builds a %function that targets a copy of the incoming
       *  function object.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *
       *  The newly-created %function object will target a copy of
       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, the newly-created object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor,
           typename = _Requires<__not_<is_same<_Functor, function>>, void>,
           typename = _Requires<_Callable<_Functor>, void>>
    function(_Functor);

      /**
       *  @brief %Function assignment operator.
       *  @param __x A %function with identical call signature.
       *  @post @c (bool)*this == (bool)x
       *  @returns @c *this
       *
       *  The target of @a __x is copied to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(const function& __x)
      {
    function(__x).swap(*this);
    return *this;
      }

      /**
       *  @brief %Function move-assignment operator.
       *  @param __x A %function rvalue with identical call signature.
       *  @returns @c *this
       *
       *  The target of @a __x is moved to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(function&& __x) noexcept
      {
    function(std::move(__x)).swap(*this);
    return *this;
      }

      /**
       *  @brief %Function assignment to zero.
       *  @post @c !(bool)*this
       *  @returns @c *this
       *
       *  The target of @c *this is deallocated, leaving it empty.
       */
      function&
      operator=(nullptr_t) noexcept
      {
    if (_M_manager)
      {
        _M_manager(_M_functor, _M_functor, __destroy_functor);
        _M_manager = nullptr;
        _M_invoker = nullptr;
      }
    return *this;
      }

      /**
       *  @brief %Function assignment to a new target.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *  @return @c *this
       *
       *  This  %function object wrapper will target a copy of @a
       *  __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, @c this object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor>
    _Requires<_Callable<typename decay<_Functor>::type>, function&>
    operator=(_Functor&& __f)
    {
      function(std::forward<_Functor>(__f)).swap(*this);
      return *this;
    }

      /// @overload
      template<typename _Functor>
    function&
    operator=(reference_wrapper<_Functor> __f) noexcept
    {
      function(__f).swap(*this);
      return *this;
    }

      // [3.7.2.2] function modifiers

      /**
       *  @brief Swap the targets of two %function objects.
       *  @param __x A %function with identical call signature.
       *
       *  Swap the targets of @c this function object and @a __f. This
       *  function will not throw an %exception.
       */
      void swap(function& __x) noexcept
      {
    std::swap(_M_functor, __x._M_functor);
    std::swap(_M_manager, __x._M_manager);
    std::swap(_M_invoker, __x._M_invoker);
      }

      // [3.7.2.3] function capacity

      /**
       *  @brief Determine if the %function wrapper has a target.
       *
       *  @return @c true when this %function object contains a target,
       *  or @c false when it is empty.
       *
       *  This function will not throw an %exception.
       */
      explicit operator bool() const noexcept
      { return !_M_empty(); }

      // [3.7.2.4] function invocation

      /**
       *  @brief Invokes the function targeted by @c *this.
       *  @returns the result of the target.
       *  @throws bad_function_call when @c !(bool)*this
       *
       *  The function call operator invokes the target function object
       *  stored by @c this.
       */
      _Res operator()(_ArgTypes... __args) const;

#if __cpp_rtti
      // [3.7.2.5] function target access
      /**
       *  @brief Determine the type of the target of this function object
       *  wrapper.
       *
       *  @returns the type identifier of the target function object, or
       *  @c typeid(void) if @c !(bool)*this.
       *
       *  This function will not throw an %exception.
       */
      const type_info& target_type() const noexcept;

      /**
       *  @brief Access the stored target function object.
       *
       *  @return Returns a pointer to the stored target function object,
       *  if @c typeid(_Functor).equals(target_type()); otherwise, a NULL
       *  pointer.
       *
       * This function does not throw exceptions.
       *
       * @{
       */
      template<typename _Functor>       _Functor* target() noexcept;

      template<typename _Functor> const _Functor* target() const noexcept;
      // @}
#endif

    private:
      using _Invoker_type = _Res (*)(const _Any_data&, _ArgTypes&&...);
      _Invoker_type _M_invoker;
  };

#if __cpp_deduction_guides >= 201606
  template<typename>
    struct __function_guide_helper
    { };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) & noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) const noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) const & noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename... _ArgTypes>
    function(_Res(*)(_ArgTypes...)) -> function<_Res(_ArgTypes...)>;

  template<typename _Functor, typename _Signature = typename
       __function_guide_helper<decltype(&_Functor::operator())>::type>
    function(_Functor) -> function<_Signature>;
#endif

  // Out-of-line member definitions.
  template<typename _Res, typename... _ArgTypes>
    function<_Res(_ArgTypes...)>::
    function(const function& __x)
    : _Function_base()
    {
      if (static_cast<bool>(__x))
    {
      __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
      _M_invoker = __x._M_invoker;
      _M_manager = __x._M_manager;
    }
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor, typename, typename>
      function<_Res(_ArgTypes...)>::
      function(_Functor __f)
      : _Function_base()
      {
    typedef _Function_handler<_Res(_ArgTypes...), _Functor> _My_handler;

    if (_My_handler::_M_not_empty_function(__f))
      {
        _My_handler::_M_init_functor(_M_functor, std::move(__f));
        _M_invoker = &_My_handler::_M_invoke;
        _M_manager = &_My_handler::_M_manager;
      }
      }

  template<typename _Res, typename... _ArgTypes>
    _Res
    function<_Res(_ArgTypes...)>::
    operator()(_ArgTypes... __args) const
    {
      if (_M_empty())
    __throw_bad_function_call();
      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
    }

#if __cpp_rtti
  template<typename _Res, typename... _ArgTypes>
    const type_info&
    function<_Res(_ArgTypes...)>::
    target_type() const noexcept
    {
      if (_M_manager)
    {
      _Any_data __typeinfo_result;
      _M_manager(__typeinfo_result, _M_functor, __get_type_info);
      return *__typeinfo_result._M_access<const type_info*>();
    }
      else
    return typeid(void);
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      _Functor*
      function<_Res(_ArgTypes...)>::
      target() noexcept
      {
    const function* __const_this = this;
    const _Functor* __func = __const_this->template target<_Functor>();
    return const_cast<_Functor*>(__func);
      }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      const _Functor*
      function<_Res(_ArgTypes...)>::
      target() const noexcept
      {
    if (typeid(_Functor) == target_type() && _M_manager)
      {
        _Any_data __ptr;
        _M_manager(__ptr, _M_functor, __get_functor_ptr);
        return __ptr._M_access<const _Functor*>();
      }
    else
      return nullptr;
      }
#endif

  // [20.7.15.2.6] null pointer comparisons

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c true if the wrapper has no target, @c false otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return !static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return !static_cast<bool>(__f); }

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c false if the wrapper has no target, @c true otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return static_cast<bool>(__f); }


  // [20.7.15.2.7] specialized algorithms

  /**
   *  @brief Swap the targets of two polymorphic function object wrappers.
   *
   *  This function will not throw an %exception.
   */
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2062. Effect contradictions w/o no-throw guarantee of std::function swaps
  template<typename _Res, typename... _Args>
    inline void
    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y) noexcept
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++11

#endif // _GLIBCXX_STD_FUNCTION_H


-6

std::functionoverloads operator()ทำให้วัตถุ functor การทำงานแลมบ์ดาของทางเดียวกัน โดยพื้นฐานแล้วจะสร้างโครงสร้างที่มีตัวแปรสมาชิกที่สามารถเข้าถึงได้ภายในoperator()ฟังก์ชัน ดังนั้นแนวคิดพื้นฐานที่ควรทราบก็คือแลมด้าเป็นวัตถุ (เรียกว่า functor หรือวัตถุฟังก์ชัน) ไม่ใช่ฟังก์ชัน มาตรฐานระบุว่าอย่าใช้หน่วยความจำแบบไดนามิกหากสามารถหลีกเลี่ยงได้


1
lambdas ขนาดใหญ่โดยพลการจะพอดีกับขนาดคงที่ได้std::functionอย่างไร? นั่นคือคำถามสำคัญที่นี่
Miklós Homolya

2
@aaronman: ฉันรับประกันว่าstd::functionวัตถุทุกชิ้นมีขนาดเท่ากันและไม่ใช่ขนาดของ lambdas ที่บรรจุอยู่
Mooing Duck

5
@aaronman ในลักษณะเดียวกับที่แต่ละstd::vector<T...> ออบเจ็กต์มีขนาดคงที่ (copiletime) โดยไม่ขึ้นกับอินสแตนซ์ / จำนวนองค์ประกอบของตัวจัดสรรที่แท้จริง
sehe

3
@aaronman: บางทีคุณควรจะพบคำถาม stackoverflow ที่ตอบว่า std :: function ถูกนำไปใช้อย่างไรในลักษณะที่สามารถมี lambdas ขนาดตามอำเภอใจ: P
Mooing Duck

1
@aaronman: เมื่อcallableนิติบุคคลที่มีการตั้งค่าในการก่อสร้างที่ได้รับมอบหมาย ... std::function<void ()> f;ไม่จำเป็นต้องจัดสรรที่นั่นstd::function<void ()> f = [&]() { /* captures tons of variables */ };ส่วนใหญ่อาจจัดสรร std::function<void()> f = &free_function;อาจไม่ได้จัดสรรอย่างใดอย่างหนึ่ง ...
David Rodríguez - dribeas
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.