ฉันมีชุดจำนวนเต็ม ฉันต้องการค้นหาชุดลำดับที่เพิ่มขึ้นที่ยาวที่สุดโดยใช้การเขียนโปรแกรมแบบไดนามิก
ฉันมีชุดจำนวนเต็ม ฉันต้องการค้นหาชุดลำดับที่เพิ่มขึ้นที่ยาวที่สุดโดยใช้การเขียนโปรแกรมแบบไดนามิก
คำตอบ:
ตกลงฉันจะอธิบายวิธีแก้ปัญหาที่ง่ายที่สุดอันดับแรกคือ O (N ^ 2) โดยที่ N คือขนาดของคอลเลกชัน นอกจากนี้ยังมีโซลูชัน O (N log N) ซึ่งฉันจะอธิบายด้วย ดูที่นี่ได้ที่ส่วนอัลกอริทึมที่มีประสิทธิภาพ
ผมจะสมมติดัชนีของอาร์เรย์จาก 0 ถึง N - 1. เพื่อให้มีกำหนดDP[i]
ที่จะเป็นความยาวของ LIS (ที่ยาวที่สุดที่เพิ่มขึ้น subsequence) i
ซึ่งกำลังจะสิ้นสุดลงในองค์ประกอบดัชนี ในการคำนวณDP[i]
เราดูดัชนีทั้งหมดj < i
และตรวจสอบทั้งถ้าDP[j] + 1 > DP[i]
และarray[j] < array[i]
(เราต้องการให้เพิ่มขึ้น) DP[i]
ถ้าเป็นจริงเราสามารถอัปเดตที่ดีที่สุดในปัจจุบัน เพื่อหาค่าโกลบอลที่เหมาะสมสำหรับอาเรย์คุณสามารถใช้ค่าสูงสุดDP[0...N - 1]
ได้
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
}
ฉันใช้อาร์เรย์prev
เพื่อหาลำดับที่แท้จริงไม่เพียง แต่ความยาวเท่านั้น เพียงแค่กลับไปซ้ำมาจากในวงโดยใช้bestEnd
ค่าเป็นสัญญาณหยุดprev[bestEnd]
-1
O(N log N)
ทางออกที่มีประสิทธิภาพมากขึ้น:อนุญาตให้S[pos]
กำหนดเป็นจำนวนเต็มที่เล็กที่สุดที่สิ้นสุดลำดับความยาวที่เพิ่มขึ้นpos
. ทวนซ้ำผ่านจำนวนเต็มX
ของชุดอินพุตและทำสิ่งต่อไปนี้:
ถ้าX
> องค์ประกอบสุดท้ายในS
แล้วผนวกที่ส่วนท้ายของX
S
สิ่งจำเป็นนี้หมายความว่าเราได้ค้นพบสิ่งใหม่ที่LIS
ยิ่งใหญ่ที่สุด
มิฉะนั้นพบว่าองค์ประกอบที่เล็กที่สุดในS
ซึ่งเป็น>=
กว่าและเปลี่ยนเป็นX
X
เพราะS
จะถูกจัดเรียงในเวลาใด ๆ log(N)
องค์ประกอบที่สามารถพบได้โดยใช้การค้นหาไบนารีใน
Total runtime - N
จำนวนเต็มและการค้นหาแบบไบนารีสำหรับแต่ละรายการ - N * log (N) = O (N log N)
ตอนนี้ลองทำตัวอย่างจริง:
การเก็บจำนวนเต็ม:
2 6 3 4 1 2 9 5 8
ขั้นตอน:
0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS
ดังนั้นความยาวของ LIS คือ5
(ขนาดของ S)
หากต้องการสร้างจริงขึ้นมาใหม่LIS
เราจะใช้อาร์เรย์หลักอีกครั้ง อนุญาตparent[i]
เป็นบรรพบุรุษขององค์ประกอบที่มีดัชนีi
ในตอนจบที่องค์ประกอบที่มีค่าดัชนีLIS
i
เพื่อให้สิ่งต่าง ๆ ง่ายขึ้นเราสามารถเก็บไว้ในอาร์เรย์S
ไม่ใช่จำนวนเต็มจริง แต่เป็นดัชนี (ตำแหน่ง) ในชุด เราจะไม่เก็บแต่เก็บไว้{1, 2, 4, 5, 8}
{4, 5, 3, 7, 8}
นั่นคือการป้อนข้อมูล [4] = 1ใส่ [5] = 2เข้า [3] = 4เข้า [7] = 5เข้า [8] = 8
ถ้าเราอัปเดตอาร์เรย์ของ parent อย่างถูกต้อง LIS ที่แท้จริงคือ:
input[S[lastElementOfS]],
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................
ทีนี้สิ่งที่สำคัญ - เราจะอัปเดตอาร์เรย์หลักได้อย่างไร มีสองตัวเลือก:
ถ้าX
> องค์ประกอบสุดท้ายในแล้วS
parent[indexX] = indexLastElement
นี่หมายความว่าพาเรนต์ขององค์ประกอบล่าสุดคือองค์ประกอบสุดท้าย เราเพียงแค่ย่อหน้าที่ส่วนท้ายของX
S
มิฉะนั้นพบว่าดัชนีขององค์ประกอบที่เล็กที่สุดในS
ซึ่งเป็น>=
กว่าและเปลี่ยนเป็นX
ที่นี่X
parent[indexX] = S[index - 1]
DP[j] + 1 == DP[i]
แล้วจะไม่กลายเป็นดีขึ้นด้วยDP[i]
เราพยายามที่จะเพิ่มประสิทธิภาพDP[i] = DP[j] + 1
DP[i]
[1,2,5,8]
4 มาก่อน 1 ในอาร์เรย์วิธี LIS จะเป็น[1,2,4,5,8]
อย่างไร
[2,3,4,5,8]
คำตอบคือ อ่านอย่างระมัดระวัง - S
อาร์เรย์DOES NOT
แสดงลำดับจริง Let S[pos] be defined as the smallest integer that ends an increasing sequence of length pos.
คำอธิบายของ Petar Minchev ช่วยให้สิ่งต่าง ๆ ชัดเจนขึ้นสำหรับฉัน แต่มันยากสำหรับฉันที่จะวิเคราะห์ว่าทุกอย่างเป็นเช่นไรดังนั้นฉันจึงใช้งาน Python ด้วยชื่อตัวแปรที่อธิบายมากเกินไปและความคิดเห็นมากมาย ฉันใช้โซลูชันเรียกซ้ำแบบไร้เดียงสาโซลูชัน O (n ^ 2) และโซลูชัน O (n log n)
ฉันหวังว่ามันช่วยล้างอัลกอริทึม!
def recursive_solution(remaining_sequence, bigger_than=None):
"""Finds the longest increasing subsequence of remaining_sequence that is
bigger than bigger_than and returns it. This solution is O(2^n)."""
# Base case: nothing is remaining.
if len(remaining_sequence) == 0:
return remaining_sequence
# Recursive case 1: exclude the current element and process the remaining.
best_sequence = recursive_solution(remaining_sequence[1:], bigger_than)
# Recursive case 2: include the current element if it's big enough.
first = remaining_sequence[0]
if (first > bigger_than) or (bigger_than is None):
sequence_with = [first] + recursive_solution(remaining_sequence[1:], first)
# Choose whichever of case 1 and case 2 were longer.
if len(sequence_with) >= len(best_sequence):
best_sequence = sequence_with
return best_sequence
def dynamic_programming_solution(sequence):
"""Finds the longest increasing subsequence in sequence using dynamic
programming. This solution is O(n^2)."""
longest_subsequence_ending_with = []
backreference_for_subsequence_ending_with = []
current_best_end = 0
for curr_elem in range(len(sequence)):
# It's always possible to have a subsequence of length 1.
longest_subsequence_ending_with.append(1)
# If a subsequence is length 1, it doesn't have a backreference.
backreference_for_subsequence_ending_with.append(None)
for prev_elem in range(curr_elem):
subsequence_length_through_prev = (longest_subsequence_ending_with[prev_elem] + 1)
# If the prev_elem is smaller than the current elem (so it's increasing)
# And if the longest subsequence from prev_elem would yield a better
# subsequence for curr_elem.
if ((sequence[prev_elem] < sequence[curr_elem]) and
(subsequence_length_through_prev >
longest_subsequence_ending_with[curr_elem])):
# Set the candidate best subsequence at curr_elem to go through prev.
longest_subsequence_ending_with[curr_elem] = (subsequence_length_through_prev)
backreference_for_subsequence_ending_with[curr_elem] = prev_elem
# If the new end is the best, update the best.
if (longest_subsequence_ending_with[curr_elem] >
longest_subsequence_ending_with[current_best_end]):
current_best_end = curr_elem
# Output the overall best by following the backreferences.
best_subsequence = []
current_backreference = current_best_end
while current_backreference is not None:
best_subsequence.append(sequence[current_backreference])
current_backreference = (backreference_for_subsequence_ending_with[current_backreference])
best_subsequence.reverse()
return best_subsequence
def find_smallest_elem_as_big_as(sequence, subsequence, elem):
"""Returns the index of the smallest element in subsequence as big as
sequence[elem]. sequence[elem] must not be larger than every element in
subsequence. The elements in subsequence are indices in sequence. Uses
binary search."""
low = 0
high = len(subsequence) - 1
while high > low:
mid = (high + low) / 2
# If the current element is not as big as elem, throw out the low half of
# sequence.
if sequence[subsequence[mid]] < sequence[elem]:
low = mid + 1
# If the current element is as big as elem, throw out everything bigger, but
# keep the current element.
else:
high = mid
return high
def optimized_dynamic_programming_solution(sequence):
"""Finds the longest increasing subsequence in sequence using dynamic
programming and binary search (per
http://en.wikipedia.org/wiki/Longest_increasing_subsequence). This solution
is O(n log n)."""
# Both of these lists hold the indices of elements in sequence and not the
# elements themselves.
# This list will always be sorted.
smallest_end_to_subsequence_of_length = []
# This array goes along with sequence (not
# smallest_end_to_subsequence_of_length). Following the corresponding element
# in this array repeatedly will generate the desired subsequence.
parent = [None for _ in sequence]
for elem in range(len(sequence)):
# We're iterating through sequence in order, so if elem is bigger than the
# end of longest current subsequence, we have a new longest increasing
# subsequence.
if (len(smallest_end_to_subsequence_of_length) == 0 or
sequence[elem] > sequence[smallest_end_to_subsequence_of_length[-1]]):
# If we are adding the first element, it has no parent. Otherwise, we
# need to update the parent to be the previous biggest element.
if len(smallest_end_to_subsequence_of_length) > 0:
parent[elem] = smallest_end_to_subsequence_of_length[-1]
smallest_end_to_subsequence_of_length.append(elem)
else:
# If we can't make a longer subsequence, we might be able to make a
# subsequence of equal size to one of our earlier subsequences with a
# smaller ending number (which makes it easier to find a later number that
# is increasing).
# Thus, we look for the smallest element in
# smallest_end_to_subsequence_of_length that is at least as big as elem
# and replace it with elem.
# This preserves correctness because if there is a subsequence of length n
# that ends with a number smaller than elem, we could add elem on to the
# end of that subsequence to get a subsequence of length n+1.
location_to_replace = find_smallest_elem_as_big_as(sequence, smallest_end_to_subsequence_of_length, elem)
smallest_end_to_subsequence_of_length[location_to_replace] = elem
# If we're replacing the first element, we don't need to update its parent
# because a subsequence of length 1 has no parent. Otherwise, its parent
# is the subsequence one shorter, which we just added onto.
if location_to_replace != 0:
parent[elem] = (smallest_end_to_subsequence_of_length[location_to_replace - 1])
# Generate the longest increasing subsequence by backtracking through parent.
curr_parent = smallest_end_to_subsequence_of_length[-1]
longest_increasing_subsequence = []
while curr_parent is not None:
longest_increasing_subsequence.append(sequence[curr_parent])
curr_parent = parent[curr_parent]
longest_increasing_subsequence.reverse()
return longest_increasing_subsequence
bisect
สำหรับการดำเนินงานที่เกิดขึ้นจริงก็อาจจะทำให้รู้สึกถึงการใช้งาน สำหรับการสาธิตวิธีการทำงานของอัลกอริทึมและคุณลักษณะด้านประสิทธิภาพของมันฉันพยายามทำให้สิ่งต่าง ๆ เป็นแบบดั้งเดิมที่สุดเท่าที่จะทำได้
พูดเกี่ยวกับการแก้ปัญหา DP ผมพบว่ามันน่าแปลกใจที่ไม่มีใครกล่าวถึงความจริงที่ว่า LIS สามารถลดลงได้LCS สิ่งที่คุณต้องทำคือเรียงลำดับสำเนาต้นฉบับลบรายการที่ซ้ำกันทั้งหมดและทำ LCS ของพวกเขา ใน pseudocode มันคือ:
def LIS(S):
T = sort(S)
T = removeDuplicates(T)
return LCS(S, T)
และการใช้งานเต็มรูปแบบเขียนใน Go คุณไม่จำเป็นต้องบำรุงรักษาทั้งเมทริกซ์ n ^ 2 DP หากคุณไม่จำเป็นต้องสร้างโซลูชันขึ้นใหม่
func lcs(arr1 []int) int {
arr2 := make([]int, len(arr1))
for i, v := range arr1 {
arr2[i] = v
}
sort.Ints(arr1)
arr3 := []int{}
prev := arr1[0] - 1
for _, v := range arr1 {
if v != prev {
prev = v
arr3 = append(arr3, v)
}
}
n1, n2 := len(arr1), len(arr3)
M := make([][]int, n2 + 1)
e := make([]int, (n1 + 1) * (n2 + 1))
for i := range M {
M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
}
for i := 1; i <= n2; i++ {
for j := 1; j <= n1; j++ {
if arr2[j - 1] == arr3[i - 1] {
M[i][j] = M[i - 1][j - 1] + 1
} else if M[i - 1][j] > M[i][j - 1] {
M[i][j] = M[i - 1][j]
} else {
M[i][j] = M[i][j - 1]
}
}
}
return M[n2][n1]
}
ต่อไปนี้ C ++ การดำเนินงานยังรวมถึงรหัสที่สร้างจริงเพิ่มขึ้น subsequence ที่ยาวที่สุดprev
ใช้อาร์เรย์ที่เรียกว่า
std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
int best_end = 0;
int sz = s.size();
if (!sz)
return std::vector<int>();
std::vector<int> prev(sz,-1);
std::vector<int> memo(sz, 0);
int max_length = std::numeric_limits<int>::min();
memo[0] = 1;
for ( auto i = 1; i < sz; ++i)
{
for ( auto j = 0; j < i; ++j)
{
if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
{
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if ( memo[i] > max_length )
{
best_end = i;
max_length = memo[i];
}
}
// Code that builds the longest increasing subsequence using "prev"
std::vector<int> results;
results.reserve(sz);
std::stack<int> stk;
int current = best_end;
while (current != -1)
{
stk.push(s[current]);
current = prev[current];
}
while (!stk.empty())
{
results.push_back(stk.top());
stk.pop();
}
return results;
}
การใช้งานโดยไม่มีสแต็กเพียงแค่ย้อนกลับเวกเตอร์
#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
auto sz = v.size();
if(!sz)
return v;
std::vector<int> memo(sz, 0);
std::vector<int> prev(sz, -1);
memo[0] = 1;
int best_end = 0;
int max_length = std::numeric_limits<int>::min();
for (auto i = 1; i < sz; ++i) {
for ( auto j = 0; j < i ; ++j) {
if (s[j] < s[i] && memo[i] < memo[j] + 1) {
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if(memo[i] > max_length) {
best_end = i;
max_length = memo[i];
}
}
// create results
std::vector<int> results;
results.reserve(v.size());
auto current = best_end;
while (current != -1) {
results.push_back(s[current]);
current = prev[current];
}
std::reverse(results.begin(), results.end());
return results;
}
นี่คือสามขั้นตอนในการประเมินปัญหาจากมุมมองการเขียนโปรแกรมแบบไดนามิก:
ถ้าเราใช้ลำดับตัวอย่าง {0, 8, 2, 3, 7, 9} ที่ index:
นี่คือรหัส C ++ 11 ที่ใช้งานได้:
#include <iostream>
#include <vector>
int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
if(index == 0) {
sub.push_back(std::vector<int>{sequence[0]});
return 1;
}
size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
std::vector<std::vector<int>> tmpSubSeq;
for(std::vector<int> &subSeq : sub) {
if(subSeq[subSeq.size() - 1] < sequence[index]) {
std::vector<int> newSeq(subSeq);
newSeq.push_back(sequence[index]);
longestSubSeq = std::max(longestSubSeq, newSeq.size());
tmpSubSeq.push_back(newSeq);
}
}
std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
std::back_insert_iterator<std::vector<std::vector<int>>>(sub));
return longestSubSeq;
}
int getLongestIncSub(const std::vector<int> &sequence) {
std::vector<std::vector<int>> sub;
return getLongestIncSub(sequence, sequence.size() - 1, sub);
}
int main()
{
std::vector<int> seq{0, 8, 2, 3, 7, 9};
std::cout << getLongestIncSub(seq);
return 0;
}
นี่คือการใช้ Scala ของอัลกอริทึม O (n ^ 2):
object Solve {
def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
xs.foldLeft(List[(Int, List[T])]()) {
(sofar, x) =>
if (sofar.isEmpty) List((1, List(x)))
else {
val resIfEndsAtCurr = (sofar, xs).zipped map {
(tp, y) =>
val len = tp._1
val seq = tp._2
if (ord.lteq(y, x)) {
(len + 1, x :: seq) // reversely recorded to avoid O(n)
} else {
(1, List(x))
}
}
sofar :+ resIfEndsAtCurr.maxBy(_._1)
}
}.maxBy(_._1)._2.reverse
}
def main(args: Array[String]) = {
println(longestIncrSubseq(List(
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
}
}
นี่คือการติดตั้ง JAVA O (n ^ 2) อีกรายการ ไม่มีการเรียกซ้ำ / บันทึกช่วยจำในการสร้างลำดับที่แท้จริง เพียงแค่อาร์เรย์สตริงที่จัดเก็บ LIS จริงในทุกขั้นตอนและอาร์เรย์เพื่อเก็บความยาวของ LIS สำหรับแต่ละองค์ประกอบ คำสาปสวยง่าย ไปดูกัน:
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
* Created by Shreyans on 4/16/2015
*/
class LNG_INC_SUB//Longest Increasing Subsequence
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
String[] s1=br.readLine().split(" ");
int n=s1.length;
int[] a=new int[n];//Array actual of Numbers
String []ls=new String[n];// Array of Strings to maintain LIS for every element
for(int i=0;i<n;i++)
{
a[i]=Integer.parseInt(s1[i]);
}
int[]dp=new int[n];//Storing length of max subseq.
int max=dp[0]=1;//Defaults
String seq=ls[0]=s1[0];//Defaults
for(int i=1;i<n;i++)
{
dp[i]=1;
String x="";
for(int j=i-1;j>=0;j--)
{
//First check if number at index j is less than num at i.
// Second the length of that DP should be greater than dp[i]
// -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
if(a[j]<a[i]&&dp[j]>dp[i]-1)
{
dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
}
}
x+=(" "+a[i]);
ls[i]=x;
if(dp[i]>max)
{
max=dp[i];
seq=ls[i];
}
}
System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
}
}
โค้ดที่ใช้งานได้: http://ideone.com/sBiOQx
สิ่งนี้สามารถแก้ไขได้ใน O (n ^ 2) โดยใช้ Dynamic Programming รหัสไพ ธ อนเดียวกันจะเป็นเช่น: -
def LIS(numlist):
LS = [1]
for i in range(1, len(numlist)):
LS.append(1)
for j in range(0, i):
if numlist[i] > numlist[j] and LS[i]<=LS[j]:
LS[i] = 1 + LS[j]
print LS
return max(LS)
numlist = map(int, raw_input().split(' '))
print LIS(numlist)
สำหรับอินพุต:5 19 5 81 50 28 29 1 83 23
การส่งออกจะเป็น:[1, 2, 1, 3, 3, 3, 4, 1, 5, 3]
5
list_index ของรายการผลลัพธ์คือ list_index ของรายการอินพุต ค่าที่ list_index ที่กำหนดในรายการผลลัพธ์หมายถึงความยาวการเรียงลำดับที่ยาวที่สุดที่เพิ่มขึ้นสำหรับ list_index นั้น
นี่คือการใช้งาน Java O (nlogn)
import java.util.Scanner;
public class LongestIncreasingSeq {
private static int binarySearch(int table[],int a,int len){
int end = len-1;
int beg = 0;
int mid = 0;
int result = -1;
while(beg <= end){
mid = (end + beg) / 2;
if(table[mid] < a){
beg=mid+1;
result = mid;
}else if(table[mid] == a){
return len-1;
}else{
end = mid-1;
}
}
return result;
}
public static void main(String[] args) {
// int[] t = {1, 2, 5,9,16};
// System.out.println(binarySearch(t , 9, 5));
Scanner in = new Scanner(System.in);
int size = in.nextInt();//4;
int A[] = new int[size];
int table[] = new int[A.length];
int k = 0;
while(k<size){
A[k++] = in.nextInt();
if(k<size-1)
in.nextLine();
}
table[0] = A[0];
int len = 1;
for (int i = 1; i < A.length; i++) {
if(table[0] > A[i]){
table[0] = A[i];
}else if(table[len-1]<A[i]){
table[len++]=A[i];
}else{
table[binarySearch(table, A[i],len)+1] = A[i];
}
}
System.out.println(len);
}
}
นี่เป็นการนำ Java ไปใช้ใน O (n ^ 2) ฉันไม่ได้ใช้การค้นหาแบบไบนารีเพื่อค้นหาองค์ประกอบที่เล็กที่สุดใน S ซึ่ง>> = กว่า X ฉันใช้ a สำหรับลูป การใช้การค้นหาแบบไบนารีจะทำให้ความซับซ้อนที่ O (n logn)
public static void olis(int[] seq){
int[] memo = new int[seq.length];
memo[0] = seq[0];
int pos = 0;
for (int i=1; i<seq.length; i++){
int x = seq[i];
if (memo[pos] < x){
pos++;
memo[pos] = x;
} else {
for(int j=0; j<=pos; j++){
if (memo[j] >= x){
memo[j] = x;
break;
}
}
}
//just to print every step
System.out.println(Arrays.toString(memo));
}
//the final array with the LIS
System.out.println(Arrays.toString(memo));
System.out.println("The length of lis is " + (pos + 1));
}
ชำระเงินรหัสในจาวาสำหรับลำดับที่เพิ่มขึ้นที่ยาวที่สุดกับองค์ประกอบอาร์เรย์
/**
** Java Program to implement Longest Increasing Subsequence Algorithm
**/
import java.util.Scanner;
/** Class LongestIncreasingSubsequence **/
class LongestIncreasingSubsequence
{
/** function lis **/
public int[] lis(int[] X)
{
int n = X.length - 1;
int[] M = new int[n + 1];
int[] P = new int[n + 1];
int L = 0;
for (int i = 1; i < n + 1; i++)
{
int j = 0;
/** Linear search applied here. Binary Search can be applied too.
binary search for the largest positive j <= L such that
X[M[j]] < X[i] (or set j = 0 if no such value exists) **/
for (int pos = L ; pos >= 1; pos--)
{
if (X[M[pos]] < X[i])
{
j = pos;
break;
}
}
P[i] = M[j];
if (j == L || X[i] < X[M[j + 1]])
{
M[j + 1] = i;
L = Math.max(L,j + 1);
}
}
/** backtrack **/
int[] result = new int[L];
int pos = M[L];
for (int i = L - 1; i >= 0; i--)
{
result[i] = X[pos];
pos = P[pos];
}
return result;
}
/** Main Function **/
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Longest Increasing Subsequence Algorithm Test\n");
System.out.println("Enter number of elements");
int n = scan.nextInt();
int[] arr = new int[n + 1];
System.out.println("\nEnter "+ n +" elements");
for (int i = 1; i <= n; i++)
arr[i] = scan.nextInt();
LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence();
int[] result = obj.lis(arr);
/** print result **/
System.out.print("\nLongest Increasing Subsequence : ");
for (int i = 0; i < result.length; i++)
System.out.print(result[i] +" ");
System.out.println();
}
}
สิ่งนี้สามารถแก้ไขได้ใน O (n ^ 2) โดยใช้การเขียนโปรแกรมแบบไดนามิก
ประมวลผลองค์ประกอบการป้อนข้อมูลตามลำดับและรักษารายการของสิ่งอันดับสำหรับแต่ละองค์ประกอบ แต่ละ tuple (A, B) สำหรับองค์ประกอบ i จะหมายถึง A = ความยาวของการเพิ่มลำดับย่อยที่ยาวที่สุดที่ i และ B = ดัชนีของบรรพบุรุษของรายการ [i] ในการเพิ่มลำดับย่อยที่ยาวที่สุดที่รายการ [i ]
เริ่มจากองค์ประกอบที่ 1 รายการของ tuple สำหรับองค์ประกอบที่ 1 จะเป็น [(1,0)] สำหรับองค์ประกอบ i สแกนรายการ 0..i และค้นหารายการองค์ประกอบ [k] เช่นนั้นรายการ [k] <รายการ [i] ค่าของ A สำหรับองค์ประกอบ i, Ai จะเป็น Ak + 1 และ Bi จะเป็น k หากมีองค์ประกอบหลายอย่างให้เพิ่มเข้าในรายการสิ่งอันดับสำหรับองค์ประกอบ i
ในที่สุดค้นหาองค์ประกอบทั้งหมดที่มีค่าสูงสุด A (ความยาวของ LIS ที่สิ้นสุดที่องค์ประกอบ) และ backtrack โดยใช้ tuples เพื่อรับรายการ
ฉันแบ่งปันรหัสเดียวกันที่http://www.edufyme.com/code/?id=66f041e16a60928b05a7e228a89c3799
การประยุกต์ใช้จาวา O (n ^ 2):
void LIS(int arr[]){
int maxCount[]=new int[arr.length];
int link[]=new int[arr.length];
int maxI=0;
link[0]=0;
maxCount[0]=0;
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
maxCount[i]=maxCount[j]+1;
link[i]=j;
if(maxCount[i]>maxCount[maxI]){
maxI=i;
}
}
}
}
for (int i = 0; i < link.length; i++) {
System.out.println(arr[i]+" "+link[i]);
}
print(arr,maxI,link);
}
void print(int arr[],int index,int link[]){
if(link[index]==index){
System.out.println(arr[index]+" ");
return;
}else{
print(arr, link[index], link);
System.out.println(arr[index]+" ");
}
}
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
แม้ว่าจะมีวิธีที่คุณสามารถแก้ปัญหานี้ในเวลา O (nlogn) (วิธีนี้จะแก้ปัญหาในเวลา O (n ^ 2)) แต่วิธีนี้ยังให้วิธีการเขียนโปรแกรมแบบไดนามิกซึ่งเป็นสิ่งที่ดี
นี่คือโซลูชัน Leetcode ของฉันโดยใช้การค้นหาแบบไบนารี: ->
class Solution:
def binary_search(self,s,x):
low=0
high=len(s)-1
flag=1
while low<=high:
mid=(high+low)//2
if s[mid]==x:
flag=0
break
elif s[mid]<x:
low=mid+1
else:
high=mid-1
if flag:
s[low]=x
return s
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums:
return 0
s=[]
s.append(nums[0])
for i in range(1,len(nums)):
if s[-1]<nums[i]:
s.append(nums[i])
else:
s=self.binary_search(s,nums[i])
return len(s)
#include <iostream>
#include "vector"
using namespace std;
// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
if(beg<=end)
{
int mid = (beg+end)/2;
if(a[mid] == value)
return mid;
else if(value < a[mid])
return ceilBinarySearch(a,beg,mid-1,value);
else
return ceilBinarySearch(a,mid+1,end,value);
return 0;
}
return beg;
}
int lis(vector<int> arr)
{
vector<int> dp(arr.size(),0);
int len = 0;
for(int i = 0;i<arr.size();i++)
{
int j = ceilBinarySearch(dp,0,len-1,arr[i]);
dp[j] = arr[i];
if(j == len)
len++;
}
return len;
}
int main()
{
vector<int> arr {2, 5,-1,0,6,1,2};
cout<<lis(arr);
return 0;
}
ผลลัพธ์:
4
ผลสืบเนื่องที่เพิ่มขึ้นยาวนานที่สุด (Java)
import java.util.*;
class ChainHighestValue implements Comparable<ChainHighestValue>{
int highestValue;
int chainLength;
ChainHighestValue(int highestValue,int chainLength) {
this.highestValue = highestValue;
this.chainLength = chainLength;
}
@Override
public int compareTo(ChainHighestValue o) {
return this.chainLength-o.chainLength;
}
}
public class LongestIncreasingSubsequenceLinkedList {
private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
for(int i=0;i<size;i++){
int currValue=arr[i];
if(valuePairs.size()==0){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}else{
try{
ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
seqList.get(index).add(arr[i]);
heighestIndex.highestValue=arr[i];
heighestIndex.chainLength+=1;
}catch (Exception e){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}
}
}
ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
return seqList.get(index);
}
public static void main(String[] args){
int arry[]={5,1,3,6,11,30,32,5,3,73,79};
//int arryB[]={3,1,5,2,6,4,9};
LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
System.out.println("Longest Incrementing Subsequence:");
for(Integer a: LIS){
System.out.print(a+" ");
}
}
}
ฉันใช้ LIS เป็นภาษาจาวาโดยใช้ Dynamic Programming and Memoization พร้อมกับรหัสที่ฉันได้ทำการคำนวณความซับซ้อนเช่นทำไมมันเป็น O (n Log (base2) n) เนื่องจากฉันรู้สึกว่าคำอธิบายเชิงทฤษฎีหรือตรรกะนั้นดี แต่การสาธิตในทางปฏิบัตินั้นดีกว่าสำหรับความเข้าใจอยู่เสมอ
package com.company.dynamicProgramming;
import java.util.HashMap;
import java.util.Map;
public class LongestIncreasingSequence {
static int complexity = 0;
public static void main(String ...args){
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int n = arr.length;
Map<Integer, Integer> memo = new HashMap<>();
lis(arr, n, memo);
//Display Code Begins
int x = 0;
System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
for(Map.Entry e : memo.entrySet()){
if((Integer)e.getValue() > x){
System.out.print(arr[(Integer)e.getKey()-1] + " ");
x++;
}
}
System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
//Display Code Ends
}
static int lis(int[] arr, int n, Map<Integer, Integer> memo){
if(n==1){
memo.put(1, 1);
return 1;
}
int lisAti;
int lisAtn = 1;
for(int i = 1; i < n; i++){
complexity++;
if(memo.get(i)!=null){
lisAti = memo.get(i);
}else {
lisAti = lis(arr, i, memo);
}
if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
lisAtn = lisAti +1;
}
}
memo.put(n, lisAtn);
return lisAtn;
}
}
ในขณะที่ฉันวิ่งรหัสข้างต้น -
Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80
And Time Complexity for Array size 9 is just 36
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0
วิธี O (NLog (N)) วิธีการหาลำดับย่อยที่เพิ่มขึ้นยาวที่สุด
ให้เรารักษาอาร์เรย์ที่องค์ประกอบ ith เป็นจำนวนที่เล็กที่สุดที่เป็นไปได้ซึ่งลำดับย่อย ai ที่มีขนาดสามารถสิ้นสุดได้
ฉันตั้งใจหลีกเลี่ยงรายละเอียดเพิ่มเติมเนื่องจากคำตอบที่ได้รับการโหวตแล้วอธิบายไว้แล้ว แต่ในที่สุดเทคนิคนี้นำไปสู่การนำไปปฏิบัติอย่างเป็นระเบียบโดยใช้โครงสร้างข้อมูลชุด (อย่างน้อยใน c ++)
นี่คือการใช้งานใน c ++ (สมมติว่าจำเป็นต้องเพิ่มขนาดของลำดับย่อยที่ยาวที่สุด)
#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;
int main()
{
ll n;
cin >> n;
ll arr[n];
set<ll> S;
for(ll i=0; i<n; i++)
{
cin >> arr[i];
auto it = S.lower_bound(arr[i]);
if(it != S.end())
S.erase(it);
S.insert(arr[i]);
}
cout << S.size() << endl; // Size of the set is the required answer
return 0;
}