เพื่อความสมบูรณ์: นอกจากฟังก์ชัน Pandas read_sql_query()
คุณยังสามารถใช้ฟังก์ชัน Pandas-DataFrame from_records()
เพื่อแปลงไฟล์structured or record ndarray to DataFrame
.
สิ่งนี้มีประโยชน์หากคุณได้ดำเนินการค้นหาใน SQLAlchemy แล้วและมีผลลัพธ์ที่พร้อมใช้งานแล้ว:
import pandas as pd
from sqlalchemy import Column, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import scoped_session, sessionmaker
SQLALCHEMY_DATABASE_URI = 'postgresql://postgres:postgres@localhost:5432/my_database'
engine = create_engine(SQLALCHEMY_DATABASE_URI, pool_pre_ping=True, echo=False)
db = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine))
Base = declarative_base(bind=engine)
class Currency(Base):
"""The `Currency`-table"""
__tablename__ = "currency"
__table_args__ = {"schema": "data"}
id = Column(Integer, primary_key=True, nullable=False)
name = Column(String(64), nullable=False)
# Defining the SQLAlchemy-query
currency_query = db.query(Currency).with_entities(Currency.id, Currency.name)
# Getting all the entries via SQLAlchemy
currencies = currency_query.all()
# We provide also the (alternate) column names and set the index here,
# renaming the column `id` to `currency__id`
df_from_records = pd.DataFrame.from_records(currencies
, index='currency__id'
, columns=['currency__id', 'name'])
print(df_from_records.head(5))
# Or getting the entries via Pandas instead of SQLAlchemy using the
# aforementioned function `read_sql_query()`. We can set the index-columns here as well
df_from_query = pd.read_sql_query(currency_query.statement, db.bind, index_col='id')
# Renaming the index-column(s) from `id` to `currency__id` needs another statement
df_from_query.index.rename(name='currency__id', inplace=True)
print(df_from_query.head(5))
df = pd.read_sql(query, query.bind)
เมื่อquery
เป็นไฟล์sqlalchemy.sql.selectable.Select
.'Select' object has no attribute 'session'
มิฉะนั้นผมได้