ทั้งสองเป็นรูปแบบการจัดเก็บคอลัมน์ (ดิสก์ -)สำหรับใช้ในระบบวิเคราะห์ข้อมูล ทั้งสองอย่างรวมอยู่ในApache Arrow ( แพ็คเกจpyarrowสำหรับ python) และได้รับการออกแบบให้สอดคล้องกับArrowเป็นเลเยอร์การวิเคราะห์ในหน่วยความจำแบบคอลัมน์
ทั้งสองรูปแบบแตกต่างกันอย่างไร?
คุณควรชอบขนนกเมื่อทำงานกับหมีแพนด้าเมื่อเป็นไปได้หรือไม่?
อะไรคือกรณีการใช้งานที่ขนนกเหมาะสมกว่าไม้ปาร์เก้และในทางกลับกัน?
ภาคผนวก
ฉันพบคำแนะนำบางอย่างที่นี่https://github.com/wesm/feather/issues/188แต่เนื่องจากโครงการนี้อายุยังน้อยอาจล้าสมัยไปบ้าง
ไม่ใช่การทดสอบความเร็วที่จริงจังเพราะฉันแค่ทิ้งและโหลด Dataframe ทั้งหมด แต่เพื่อให้คุณประทับใจหากคุณไม่เคยได้ยินเกี่ยวกับรูปแบบมาก่อน:
# IPython
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.feather as feather
import pyarrow.parquet as pq
import fastparquet as fp
df = pd.DataFrame({'one': [-1, np.nan, 2.5],
'two': ['foo', 'bar', 'baz'],
'three': [True, False, True]})
print("pandas df to disk ####################################################")
print('example_feather:')
%timeit feather.write_feather(df, 'example_feather')
# 2.62 ms ± 35.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print('example_parquet:')
%timeit pq.write_table(pa.Table.from_pandas(df), 'example.parquet')
# 3.19 ms ± 51 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print()
print("for comparison:")
print('example_pickle:')
%timeit df.to_pickle('example_pickle')
# 2.75 ms ± 18.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
print('example_fp_parquet:')
%timeit fp.write('example_fp_parquet', df)
# 7.06 ms ± 205 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
print('example_hdf:')
%timeit df.to_hdf('example_hdf', 'key_to_store', mode='w', table=True)
# 24.6 ms ± 4.45 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
print()
print("pandas df from disk ##################################################")
print('example_feather:')
%timeit feather.read_feather('example_feather')
# 969 µs ± 1.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print('example_parquet:')
%timeit pq.read_table('example.parquet').to_pandas()
# 1.9 ms ± 5.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print("for comparison:")
print('example_pickle:')
%timeit pd.read_pickle('example_pickle')
# 1.07 ms ± 6.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print('example_fp_parquet:')
%timeit fp.ParquetFile('example_fp_parquet').to_pandas()
# 4.53 ms ± 260 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
print('example_hdf:')
%timeit pd.read_hdf('example_hdf')
# 10 ms ± 43.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# pandas version: 0.22.0
# fastparquet version: 0.1.3
# numpy version: 1.13.3
# pandas version: 0.22.0
# pyarrow version: 0.8.0
# sys.version: 3.6.3
# example Dataframe taken from https://arrow.apache.org/docs/python/parquet.html