ฉันพยายามที่จะสร้างตัวอย่างง่ายๆนโยบายการไล่โทนสีจากมันทรัพยากรกำเนิดAndrej Karpathy บล็อก ในบทความนั้นคุณจะพบตัวอย่างกับ CartPole และ Policy Gradient พร้อมรายการน้ำหนักและการเปิดใช้งาน Softmax นี่คือตัวอย่างการสร้างและง่ายมากของฉัน CartPole ลาดนโยบายซึ่งทำงานที่สมบูรณ์แบบ
import gym
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
import copy
NUM_EPISODES = 4000
LEARNING_RATE = 0.000025
GAMMA = 0.99
# noinspection PyMethodMayBeStatic
class Agent:
def __init__(self):
self.poly = PolynomialFeatures(1)
self.w = np.random.rand(5, 2)
def policy(self, state):
z = state.dot(self.w)
exp = np.exp(z)
return exp/np.sum(exp)
def __softmax_grad(self, softmax):
s = softmax.reshape(-1,1)
return np.diagflat(s) - np.dot(s, s.T)
def grad(self, probs, action, state):
dsoftmax = self.__softmax_grad(probs)[action,:]
dlog = dsoftmax / probs[0,action]
grad = state.T.dot(dlog[None,:])
return grad
def update_with(self, grads, rewards):
for i in range(len(grads)):
# Loop through everything that happend in the episode
# and update towards the log policy gradient times **FUTURE** reward
total_grad_effect = 0
for t, r in enumerate(rewards[i:]):
total_grad_effect += r * (GAMMA ** r)
self.w += LEARNING_RATE * grads[i] * total_grad_effect
print("Grads update: " + str(np.sum(grads[i])))
def main(argv):
env = gym.make('CartPole-v0')
np.random.seed(1)
agent = Agent()
complete_scores = []
for e in range(NUM_EPISODES):
state = env.reset()[None, :]
state = agent.poly.fit_transform(state)
rewards = []
grads = []
score = 0
while True:
probs = agent.policy(state)
action_space = env.action_space.n
action = np.random.choice(action_space, p=probs[0])
next_state, reward, done,_ = env.step(action)
next_state = next_state[None,:]
next_state = agent.poly.fit_transform(next_state.reshape(1, 4))
grad = agent.grad(probs, action, state)
grads.append(grad)
rewards.append(reward)
score += reward
state = next_state
if done:
break
agent.update_with(grads, rewards)
complete_scores.append(score)
env.close()
plt.plot(np.arange(NUM_EPISODES),
complete_scores)
plt.savefig('image1.png')
if __name__ == '__main__':
main(None)
.
.
คำถาม
ฉันพยายามที่จะทำเกือบเป็นตัวอย่างเดียวกัน แต่ด้วยการเปิดใช้งาน Sigmoid (เพื่อความเรียบง่าย) นั่นคือทั้งหมดที่ฉันต้องทำ สวิทช์เปิดใช้งานในรูปแบบจากไปsoftmax
sigmoid
ซึ่งควรใช้งานได้อย่างแน่นอน (ตามคำอธิบายด้านล่าง) แต่รูปแบบการไล่ระดับสีนโยบายของฉันไม่ได้เรียนรู้อะไรเลยและมีการสุ่ม ข้อเสนอแนะใด ๆ
import gym
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
NUM_EPISODES = 4000
LEARNING_RATE = 0.000025
GAMMA = 0.99
# noinspection PyMethodMayBeStatic
class Agent:
def __init__(self):
self.poly = PolynomialFeatures(1)
self.w = np.random.rand(5, 1) - 0.5
# Our policy that maps state to action parameterized by w
# noinspection PyShadowingNames
def policy(self, state):
z = np.sum(state.dot(self.w))
return self.sigmoid(z)
def sigmoid(self, x):
s = 1 / (1 + np.exp(-x))
return s
def sigmoid_grad(self, sig_x):
return sig_x * (1 - sig_x)
def grad(self, probs, action, state):
dsoftmax = self.sigmoid_grad(probs)
dlog = dsoftmax / probs
grad = state.T.dot(dlog)
grad = grad.reshape(5, 1)
return grad
def update_with(self, grads, rewards):
if len(grads) < 50:
return
for i in range(len(grads)):
# Loop through everything that happened in the episode
# and update towards the log policy gradient times **FUTURE** reward
total_grad_effect = 0
for t, r in enumerate(rewards[i:]):
total_grad_effect += r * (GAMMA ** r)
self.w += LEARNING_RATE * grads[i] * total_grad_effect
def main(argv):
env = gym.make('CartPole-v0')
np.random.seed(1)
agent = Agent()
complete_scores = []
for e in range(NUM_EPISODES):
state = env.reset()[None, :]
state = agent.poly.fit_transform(state)
rewards = []
grads = []
score = 0
while True:
probs = agent.policy(state)
action_space = env.action_space.n
action = np.random.choice(action_space, p=[1 - probs, probs])
next_state, reward, done, _ = env.step(action)
next_state = next_state[None, :]
next_state = agent.poly.fit_transform(next_state.reshape(1, 4))
grad = agent.grad(probs, action, state)
grads.append(grad)
rewards.append(reward)
score += reward
state = next_state
if done:
break
agent.update_with(grads, rewards)
complete_scores.append(score)
env.close()
plt.plot(np.arange(NUM_EPISODES),
complete_scores)
plt.savefig('image1.png')
if __name__ == '__main__':
main(None)
พล็อตการเรียนรู้ทั้งหมดจะสุ่ม ไม่มีสิ่งใดช่วยปรับจูนพารามิเตอร์ไฮเปอร์ ด้านล่างภาพตัวอย่าง
การอ้างอิง :
1) การเรียนรู้การเสริมแรงลึก: โป่งจากพิกเซล
2) ความรู้เบื้องต้นเกี่ยวกับการไล่ระดับสีของนโยบายด้วย Cartpole และ Doom
3) การไล่ระดับนโยบายที่ได้มาและการดำเนินการตามนโยบาย
4) เทคนิคการเรียนรู้เคล็ดลับประจำวัน (5): บันทึกเคล็ดลับอนุพันธ์ 12
UPDATE
ดูเหมือนว่าคำตอบด้านล่างสามารถทำงานได้จากกราฟิก แต่ไม่ใช่บันทึกความน่าจะเป็นและไม่ใช่การไล่ระดับสีของนโยบาย และเปลี่ยนแปลงวัตถุประสงค์โดยรวมของนโยบาย RL Gradient โปรดตรวจสอบข้อมูลอ้างอิงด้านบน ต่อไปนี้ภาพเราคำสั่งต่อไป
ฉันต้องใช้ฟังก์ชันไล่ระดับสีของนโยบายของฉัน (ซึ่งเป็นเพียงน้ำหนักและการsigmoid
เปิดใช้งาน)
softmax
signmoid
นั่นเป็นเพียงสิ่งเดียวที่ฉันต้องทำในตัวอย่างข้างต้น
[0, 1]
ที่สามารถตีความได้ว่าเป็นความน่าจะเป็นของการกระทำในเชิงบวก (เช่นเลี้ยวขวาใน CartPole เป็นต้น) จากนั้นน่าจะเป็นของการดำเนินการลบ (เลี้ยวซ้าย) 1 - sigmoid
เป็น ผลรวมของความน่าจะเป็นนี้คือ 1 ใช่นี่เป็นสภาพแวดล้อมของการ์ดโพล