22
วิธีการใช้งานฟังก์ชั่น Softmax ใน Python
จากคลาสการเรียนรู้เชิงลึกของ Udacityซอฟต์แม็กซ์ของ y_i นั้นเป็นเพียงแค่เลขชี้กำลังหารด้วยผลรวมของเลขชี้กำลังของเวกเตอร์ Y ทั้งหมด: S(y_i)ฟังก์ชัน softmax อยู่ที่ไหนy_iและeเป็นเลขชี้กำลังและjเป็นเลขที่ ของคอลัมน์ในเวกเตอร์อินพุต Y ฉันได้ลองทำสิ่งต่อไปนี้แล้ว: import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() scores = [3.0, 1.0, 0.2] print(softmax(scores)) ซึ่งผลตอบแทน: [ 0.8360188 0.11314284 0.05083836] แต่ทางออกที่แนะนำคือ: def …