สมมติว่าการวัดครั้งต่อไปที่คุณทำไม่ได้ใช้การวัดครั้งก่อนอย่างไรก็ตาม นี่เป็นเรื่องยากเพราะคุณต้องใช้การเปลี่ยนแปลงพื้นฐานบนเวกเตอร์สถานะเพื่อที่จะเข้าใจความน่าจะเป็น ด้วยการวัดของ Pauli แม้ว่ามันจะมีแนวโน้มที่จะง่ายเนื่องจาก eigenbases เกี่ยวข้องในวิธีที่ดีนั่นคือ:
|0Z⟩=12–√(|0X⟩+|1X⟩)
|1Z⟩=12–√(|0X⟩−|1X⟩)
A good way to check your understanding: What is the probability of measuring X=+1 after the Z1=1 measurement above? What is the probability if we have not made the Z1 measurement? Then a more complicated question is to look at product operators that act on both qubits at once, for instance, how does a measurement of Z1Z2=+1 affect the initial state? Here Z1Z2 measures the product of the two operators.
คำตอบที่ดีและเรียบง่าย ฉันคิดว่ามันเป็นสิ่งสำคัญที่จะต้องทราบว่าสิ่งที่คุณอธิบายนั้นเป็นจริงเฉพาะในกรณีที่คุณ a) ทำการวัดแบบ projective และ b) คุณรู้ผลลัพธ์ของการวัด เพียงจำไว้ว่าโดยทั่วไปคุณจะต้องมีสถานะผสมเพื่ออธิบายสถานะหลังการวัด
and let |ψ0⟩=|φ0⟩/⟨φ0|φ0⟩−−−−−−√ and |ψ1⟩=|φ1⟩/⟨φ1|φ1⟩−−−−−−√. It is not too difficult to show that, if you measure the first qubit and obtain the state |0⟩, the state of the entire system "collapses" to |ψ0⟩, and if you obtain |1⟩ what you obtain is |ψ1⟩.
This is broadly analogous to the idea of conditional probability distributions: you might think of |ψ0⟩ as the state of the system conditioned on the first qubit being |0⟩, and |ψ1⟩ as the state of the system conditioned on the first qubit being |1⟩ (except of course that the story is a bit more complicated, on account of the fact that the first qubit is not "secretly" in either the state 0 or 1).
The above is not strongly dependent on measuring the first qubit: we can define |φ0⟩ and |φ1⟩ in terms of fixing any particular bit in the bit string x to either 0 or 1, summing over only those components which are consistent with either the choice 0 or 1, and proceeding as above.
The above is also not strongly dependent on measuring in the standard basis, as Emily indicates. If we wish to consider measuring the first qubit in the basis |α⟩,|β⟩, where |α⟩=α0|0⟩+α1|1⟩ and |β⟩=β0|0⟩+β1|1⟩, we define
Now suppose you measure the most-significant (leftmost) qbit in the computational basis (as in, collapse it to either |0⟩ or |1⟩). There are two questions we might ask:
What is the probability that the measured qbit collapses to |0⟩? What about |1⟩?
What is the state of the 2-qbit system after measurement?
For the first question, the intuitive answer is this: take the sum of squares of all amplitudes associated with the value for which you want to find the probability of collapse. So, if you want to know the probability of the measured qbit collapsing to |0⟩, you'd look at the amplitudes associated with cases |00⟩ and |01⟩, because those are the cases where the measured qbit is |0⟩. Thus:
P[|0⟩]=|α00|2+|α01|2
Similarly, for |1⟩ you look at the amplitudes associated with cases |10⟩ and |11⟩, so:
P[|1⟩]=|α10|2+|α11|2
As for the state of the 2-qbit system after measurement, what you do is cross out all the components of the superposition which are inconsistent with the answer you got. So, if you measured |0⟩, then the state after measurement is: