พื้นที่การผ่อนชำระในPoincaréครึ่งบนพื้นที่แบบดูเหมือนสามัญแต่ด้วยความคิดของมุมและระยะทางบิดเบือนในทางที่ค่อนข้างง่าย ในพื้นที่ Euclidean ฉันสามารถลิ้มลองจุดสุ่มสม่ำเสมอในลูกในหลายวิธีเช่นโดยการสร้างตัวอย่าง Gaussian อิสระที่จะได้รับทิศทางและแยกลิ้มลองรัศมีประสานงานโดยสม่ำเสมอสุ่มตัวอย่างจากโดยที่คือรัศมีและการตั้งค่า. ในระนาบครึ่งบนไฮเพอร์โบลิกทรงกลมยังคงเป็นทรงกลมมีเพียงศูนย์กลางของมันเท่านั้นที่จะไม่เป็นศูนย์กลางในตัวชี้วัดแบบยุคลิดดังนั้นเราจึงสามารถทำเช่นเดียวกัน
ถ้าเราต้องการสุ่มตัวอย่างตามการแจกแจงแบบไม่สม่ำเสมอ แต่ยังคงอยู่ในรูปแบบ isotropic เช่นการแจกแจงแบบเกาส์นี่ดูไม่ง่ายนัก ในปริภูมิแบบยุคลิดเราสามารถสร้างตัวอย่างแบบเกาส์สำหรับแต่ละพิกัด (ใช้ได้กับการแจกแบบเกาส์เซียนเท่านั้น) หรือสร้างตัวอย่างแบบเกาส์หลายมิติเท่ากัน มีวิธีโดยตรงในการแปลงตัวอย่างนี้เป็นตัวอย่างในพื้นที่ซึ่งเกินความจริงหรือไม่?
ทางเลือกอื่นอาจจะสร้างทิศทางที่กระจายอย่างสม่ำเสมอในทิศทางแรก (เช่นจากตัวอย่าง Gaussian) จากนั้นเป็นตัวอย่างแบบเกาส์สำหรับองค์ประกอบรัศมีและในที่สุดก็สร้างภาพภายใต้แผนที่เอ็กซ์โปเนนเชียลในทิศทางที่กำหนดสำหรับความยาวที่ระบุ การเปลี่ยนแปลงจะใช้ตัวอย่าง Euclidean Gaussian และแผนที่ภายใต้แผนที่เอ็กซ์โปเนนเชียล
คำถามของฉัน:
- สิ่งที่จะเป็นวิธีที่ดีและมีประสิทธิภาพในการได้รับตัวอย่างเสียนด้วยค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานในพื้นที่ซึ่งเกินความจริง?
- วิธีที่ฉันอธิบายข้างต้นมีการสุ่มตัวอย่างที่ต้องการหรือไม่
- ไม่มีใครทำงานสูตรแล้ว
- วิธีนี้ทำให้การเปรียบเทียบกับตัวชี้วัดอื่น ๆ และการแจกแจงความน่าจะเป็นอื่น ๆ เป็นอย่างไร
ขอบคุณล่วงหน้า.
แก้ไข
ฉันเพิ่งรู้ว่าแม้ในกรณีของการสุ่มตัวอย่างคำถามเหล่านี้ยังคงอยู่; แม้ว่าทรงกลมจะเป็นทรงกลมการแจกแจงแบบสม่ำเสมอจะไม่สามารถอธิบายได้ด้วยฟังก์ชันคงที่บนลูกบอล