คำถามติดแท็ก linear-system

5
การแก้ซ้ำ ๆ ด้วย ,
ฉันกำลังใช้ MATLAB เพื่อแก้ปัญหาที่เกี่ยวข้องกับการแก้A x = bAx=b\mathbf{A} \mathbf{x}=\mathbf{b}ทุก ๆ เวลาที่ขb\mathbf{b}เปลี่ยนแปลงไปตามกาลเวลา ตอนนี้ฉันกำลังทำสิ่งนี้โดยใช้ MATLAB mldivide: x = A\b ฉันมีความยืดหยุ่นในการทำให้เป็น precomputations มากที่สุดเท่าที่จำเป็นเพื่อให้ผมสงสัยว่าถ้ามีวิธีที่เร็วขึ้นและ / mldivideหรือความถูกต้องมากกว่า โดยทั่วไปแล้วจะทำอะไรที่นี่ ขอบคุณทุกคน!

1
การแก้ระบบเชิงเส้นหนาแน่นขนาดใหญ่?
มีความหวังในการแก้ระบบเชิงเส้นต่อไปนี้อย่างมีประสิทธิภาพด้วยวิธีการวนซ้ำหรือไม่? A ∈ Rn × n, x ∈ Rn, b ∈ Rnด้วย n > 106A∈Rn×n,x∈Rn,ข∈Rnกับ n>106A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^n \text{, with } n > 10^6 A x = bAx=ขAx=b กับ A = ( Δ - K)A=(Δ-K) A=(\Delta - K) โดยที่ΔΔ\Deltaเป็นเมทริกซ์เบาบางมากที่มีเส้นทแยงมุมสองสามอันเกิดจาก discretization ของ Laplace …

5
ตัวเลือกที่ดีที่สุดของตัวแก้ปัญหาสำหรับระบบสมมาตรแบบเบาบางขนาดใหญ่ (แต่ไม่ใช่ค่าบวกแน่นอน)
ขณะนี้ฉันกำลังทำงานเพื่อแก้ไขระบบสมมาตรขนาดใหญ่มาก (แต่ไม่แน่นอนแน่นอน) ที่สร้างขึ้นโดยอัลกอริทึมบางอย่าง เมทริกซ์เหล่านี้มีบล็อกความแจ่มใสที่ดีซึ่งสามารถใช้สำหรับการแก้แบบขนาน แต่ฉันไม่สามารถตัดสินใจได้ว่าฉันควรใช้วิธีการโดยตรง (เช่น Multi-frontal) หรือวนซ้ำ (GMRES หรือ MINRES ที่กำหนดเงื่อนไขไว้ล่วงหน้า) การศึกษาทั้งหมดของฉันแสดงให้เห็นว่าตัวแก้ซ้ำ (แม้จะมีการบรรจบกันอย่างรวดเร็วของการวนซ้ำภายใน 7 ครั้ง) ล้มเหลวในการเอาชนะผู้ปฏิบัติงานโดยตรงใน MATLAB แต่ในทางทฤษฎีแล้ววิธีการโดยตรงควรจะมีราคาสูงกว่า สิ่งนี้เกิดขึ้นได้อย่างไร? มีเอกสารหรือกระดาษที่ทันสมัยสำหรับกรณีดังกล่าวหรือไม่? ฉันสามารถใช้ sparsity แบบบล็อกในระบบคู่ขนานโดยใช้วิธีโดยตรงเช่นเดียวกับตัวแก้ซ้ำแบบยืดหยุ่นอย่าง GMRES
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.