ทวินามลบนั้นไม่สามารถแสดงออกได้เหมือนในตระกูลเอ็กซ์โพเนนเชียลหรือไม่ถ้ามี 2 นิรนาม?


9

ฉันมีการบ้านเพื่อแสดงการกระจายตัวแบบทวินามลบเป็นตระกูลการแจกแจงแบบเลขชี้กำลังเนื่องจากพารามิเตอร์การกระจายตัวเป็นค่าคงที่ที่รู้จัก นี่ค่อนข้างง่าย แต่ฉันสงสัยว่าทำไมพวกเขาถึงต้องการให้เราเก็บพารามิเตอร์นั้นไว้ ฉันพบว่าฉันไม่สามารถหาวิธีที่จะใส่มันในรูปแบบที่ถูกต้องโดยไม่ทราบพารามิเตอร์สองตัว

ดูออนไลน์ฉันพบการอ้างสิทธิ์ว่าเป็นไปไม่ได้ อย่างไรก็ตามฉันไม่พบหลักฐานว่านี่เป็นเรื่องจริง ฉันดูเหมือนจะไม่เกิดขึ้นกับตัวเองอย่างใดอย่างหนึ่ง ใครบ้างมีข้อพิสูจน์เรื่องนี้?

ตามที่ร้องขอด้านล่างนี้ฉันได้แนบข้อเรียกร้องสองสามข้อ:

"ตระกูลการแจกแจงลบแบบทวินามที่มีจำนวนความล้มเหลวคงที่ (aka พารามิเตอร์การหยุดเวลา) r คือตระกูลแบบเอ็กซ์โพเนนเชียลอย่างไรก็ตามเมื่อพารามิเตอร์คงที่ใด ๆ ที่กล่าวถึงข้างต้นได้รับอนุญาตให้เปลี่ยนแปลง " http://en.wikipedia.org/wiki/Exponential_family

"การแจกแจงทวินามลบสองพารามิเตอร์ไม่ได้เป็นสมาชิกของตระกูลเอ็กซ์โพเนนเชียล แต่ถ้าเราปฏิบัติต่อพารามิเตอร์การกระจายตัวเป็นค่าคงที่ที่รู้จักกันคงที่แล้วมันก็เป็นสมาชิก" http://www.unc.edu/courses/2006spring/ecol/145/001/docs/lectures/lecture21.htm


1
ฉันเพิ่มการอ้างสิทธิ์สองสามข้อด้านบน
Larry

คำตอบ:


4

หากคุณดูที่ความหนาแน่นของการแจกแจงลบแบบทวินามกับการนับจำนวนชุดของจำนวนเต็ม

p(x|N,p)=(x+N1N1)pN(1p)x=(x+N1)!x!(N1)!pN(1p)x=(x+N1)(x+1)(N1)!exp{Nlog(p)+xlog(1p)}=exp{Nlog(p)}(N1)!exp{Nlog(p)+xlog(1p)}(x+N1)(x+1)
ส่วนในความหนาแน่นนี้ไม่สามารถ แสดงเป็น\}(x+N1)(x+1)exp{A(N)TB(x)}
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.