ฉันสนใจในการเลือกรูปแบบในการตั้งค่าอนุกรมเวลา เพื่อความเป็นรูปธรรมสมมติว่าฉันต้องการเลือกรุ่น ARMA จากกลุ่มของรุ่น ARMA ที่มีคำสั่งซื้อล่าช้าต่างกัน สุดยอดความตั้งใจคือการคาดการณ์
การเลือกรุ่นสามารถทำได้โดย
- การตรวจสอบข้าม
- การใช้เกณฑ์ข้อมูล (AIC, BIC)
ท่ามกลางวิธีอื่น ๆ
ร็อบเจ Hyndman มีวิธีการทำการตรวจสอบข้ามอนุกรมเวลา สำหรับตัวอย่างที่มีขนาดค่อนข้างเล็กขนาดของตัวอย่างที่ใช้ในการตรวจสอบความถูกต้องไขว้อาจมีคุณภาพแตกต่างจากขนาดตัวอย่างดั้งเดิม ตัวอย่างเช่นหากขนาดตัวอย่างดั้งเดิมคือ 200 การสังเกตดังนั้นใครจะคิดว่าจะเริ่มการตรวจสอบข้ามโดยการสังเกต 101 ครั้งแรกและขยายหน้าต่างเป็น 102, 103, ... , 200 การสังเกตเพื่อให้ได้ 100 ผลการตรวจสอบข้าม เห็นได้ชัดว่าแบบจำลองที่มีเหตุผลพอสมควรสำหรับการสังเกต 200 ครั้งอาจใหญ่เกินไปสำหรับการสังเกต 100 ครั้งดังนั้นข้อผิดพลาดในการตรวจสอบจะมีขนาดใหญ่ ดังนั้นการตรวจสอบข้ามจึงมีแนวโน้มที่จะสนับสนุนรูปแบบที่ไม่สุภาพ นี่คือผลกระทบที่ไม่พึงประสงค์เกิดจากการไม่ตรงกันในขนาดตัวอย่าง
ทางเลือกอื่นในการตรวจสอบข้ามคือการใช้เกณฑ์ข้อมูลสำหรับการเลือกแบบจำลอง เนื่องจากฉันสนใจเกี่ยวกับการคาดการณ์ฉันจะใช้ AIC ถึงแม้ว่า AIC นั้นจะเทียบเท่ากับ asymptotically ในการลดการคาดการณ์ MSE แบบขั้นตอนเดียวให้น้อยที่สุดสำหรับแบบจำลองอนุกรมเวลา (อ้างอิงจาก Rob J. Hyndman จากการโพสต์นี้ ) ฉันสงสัยว่ามันเกี่ยวข้องกันที่นี่ตั้งแต่ตัวอย่าง ขนาดที่ฉันสนใจไม่ใช่ขนาดใหญ่ ...
คำถาม:ฉันควรเลือก AIC เมื่อใช้การตรวจสอบความถูกต้องของอนุกรมข้ามเวลาสำหรับตัวอย่างขนาดเล็ก / ขนาดกลางหรือไม่