ฉันกำลังสร้างแบบจำลองเบย์แบบลำดับชั้นที่ค่อนข้างซับซ้อนสำหรับการวิเคราะห์เมตาโดยใช้ R และ JAGS ลดความซับซ้อนของบิตสองระดับที่สำคัญของแบบจำลองมี โดยที่เป็นข้อสังเกตที่จุดสิ้นสุด (ในกรณีนี้จีเอ็มเทียบกับการปลูกพืชที่ไม่ใช่จีเอ็ม) ในการศึกษา ,เป็นผลสำหรับการศึกษา , s เป็นผลกระทบของตัวแปรระดับการศึกษาต่างๆ (สถานะการพัฒนาทางเศรษฐกิจของประเทศที่ ทำการศึกษาชนิดพันธุ์พืชวิธีการศึกษา ฯลฯ ) จัดทำดัชนีโดยกลุ่มฟังก์ชันและ
ฉันสนใจที่จะประเมินค่าของ s เป็นหลัก ซึ่งหมายความว่าการทิ้งตัวแปรระดับการศึกษาจากตัวแบบไม่ใช่ตัวเลือกที่ดี
มีความสัมพันธ์สูงระหว่างตัวแปรระดับการศึกษาหลายอย่างและฉันคิดว่าสิ่งนี้กำลังสร้างความสัมพันธ์อัตโนมัติขนาดใหญ่ในเครือข่าย MCMC ของฉัน พล็อตการวินิจฉัยนี้แสดงให้เห็นถึงวิถีลูกโซ่ (ซ้าย) และผลสัมพันธ์อัตโนมัติ (ขวา):
จากผลของความสัมพันธ์อัตโนมัติฉันได้ขนาดตัวอย่างที่มีประสิทธิภาพ 60-120 จาก 4 กลุ่ม 10,000 ตัวอย่าง
ฉันมีคำถามสองข้อข้อหนึ่งมีเป้าหมายที่ชัดเจนและอีกเรื่องเป็นเรื่องส่วนตัว
นอกเหนือจากการทำให้ผอมบางเพิ่มโซ่มากขึ้นและเรียกใช้ตัวอย่างอีกต่อไปฉันสามารถใช้เทคนิคใดในการจัดการปัญหาความสัมพันธ์อัตโนมัตินี้ โดย "จัดการ" ฉันหมายถึง "สร้างการประมาณการที่ดีพอสมควรในจำนวนเวลาที่สมเหตุสมผล" ในแง่ของพลังการประมวลผลฉันกำลังใช้งานโมเดลเหล่านี้ใน MacBook Pro
ออโตคอร์เรชั่นระดับนี้ร้ายแรงแค่ไหน? การสนทนาทั้งที่นี่และในบล็อกของ John Kruschkeแนะนำว่าถ้าเราเพิ่งเรียกใช้แบบจำลองนานพอ "ความสัมพันธ์แบบกลุ่มอัตโนมัติอาจจะถูกเฉลี่ย" (Kruschke) และดังนั้นจึงไม่ใช่เรื่องใหญ่
นี่คือรหัส JAGS สำหรับรุ่นที่สร้างพล็อตด้านบนในกรณีที่ใครก็ตามที่สนใจพอที่จะอ่านรายละเอียด:
model {
for (i in 1:n) {
# Study finding = study effect + noise
# tau = precision (1/variance)
# nu = normality parameter (higher = more Gaussian)
y[i] ~ dt(alpha[study[i]], tau[study[i]], nu)
}
nu <- nu_minus_one + 1
nu_minus_one ~ dexp(1/lambda)
lambda <- 30
# Hyperparameters above study effect
for (j in 1:n_study) {
# Study effect = country-type effect + noise
alpha_hat[j] <- gamma_countr[countr[j]] +
gamma_studytype[studytype[j]] +
gamma_jour[jourtype[j]] +
gamma_industry[industrytype[j]]
alpha[j] ~ dnorm(alpha_hat[j], tau_alpha)
# Study-level variance
tau[j] <- 1/sigmasq[j]
sigmasq[j] ~ dunif(sigmasq_hat[j], sigmasq_hat[j] + pow(sigma_bound, 2))
sigmasq_hat[j] <- eta_countr[countr[j]] +
eta_studytype[studytype[j]] +
eta_jour[jourtype[j]] +
eta_industry[industrytype[j]]
sigma_hat[j] <- sqrt(sigmasq_hat[j])
}
tau_alpha <- 1/pow(sigma_alpha, 2)
sigma_alpha ~ dunif(0, sigma_alpha_bound)
# Priors for country-type effects
# Developing = 1, developed = 2
for (k in 1:2) {
gamma_countr[k] ~ dnorm(gamma_prior_exp, tau_countr[k])
tau_countr[k] <- 1/pow(sigma_countr[k], 2)
sigma_countr[k] ~ dunif(0, gamma_sigma_bound)
eta_countr[k] ~ dunif(0, eta_bound)
}
# Priors for study-type effects
# Farmer survey = 1, field trial = 2
for (k in 1:2) {
gamma_studytype[k] ~ dnorm(gamma_prior_exp, tau_studytype[k])
tau_studytype[k] <- 1/pow(sigma_studytype[k], 2)
sigma_studytype[k] ~ dunif(0, gamma_sigma_bound)
eta_studytype[k] ~ dunif(0, eta_bound)
}
# Priors for journal effects
# Note journal published = 1, journal published = 2
for (k in 1:2) {
gamma_jour[k] ~ dnorm(gamma_prior_exp, tau_jourtype[k])
tau_jourtype[k] <- 1/pow(sigma_jourtype[k], 2)
sigma_jourtype[k] ~ dunif(0, gamma_sigma_bound)
eta_jour[k] ~ dunif(0, eta_bound)
}
# Priors for industry funding effects
for (k in 1:2) {
gamma_industry[k] ~ dnorm(gamma_prior_exp, tau_industrytype[k])
tau_industrytype[k] <- 1/pow(sigma_industrytype[k], 2)
sigma_industrytype[k] ~ dunif(0, gamma_sigma_bound)
eta_industry[k] ~ dunif(0, eta_bound)
}
}