มีอัลกอริธึมมาตรฐาน (ตรงข้ามกับโปรแกรม) สำหรับการถดถอยเชิงเส้นแบบลำดับชั้นหรือไม่? คนมักจะทำเพียงแค่ MCMC หรือมีความเชี่ยวชาญมากขึ้นบางทีอาจจะเป็นรูปแบบปิดอัลกอริทึมบางส่วน?
มีอัลกอริธึมมาตรฐาน (ตรงข้ามกับโปรแกรม) สำหรับการถดถอยเชิงเส้นแบบลำดับชั้นหรือไม่? คนมักจะทำเพียงแค่ MCMC หรือมีความเชี่ยวชาญมากขึ้นบางทีอาจจะเป็นรูปแบบปิดอัลกอริทึมบางส่วน?
คำตอบ:
มีอัลกอริธึมกำลังสองน้อยที่สุด (IGLS) วนซ้ำทั่วไปของฮาร์วี่โกลด์สไตน์สำหรับหนึ่งและมันก็เป็นการปรับเปลี่ยนเล็กน้อย, จำกัดซ้ำสแควร์สแควร์สทั่วไปน้อยที่สุด (RIGLS) ที่ให้การประมาณค่าพารามิเตอร์ความแปรปรวนแบบเป็นกลาง
อัลกอริทึมเหล่านี้ยังคงทำซ้ำดังนั้นจึงไม่ใช่รูปแบบปิด แต่มันง่ายกว่าการคำนวณ MCMC หรือโอกาสสูงสุด คุณทำซ้ำจนกว่าพารามิเตอร์จะมาบรรจบกัน
การวิเคราะห์เชิงเส้น - โมเดลผสม Goldstein H. หลายระดับโดยใช้กำลังสองน้อยซ้ำทั่วไป Biometrika 1986; 73 (1): 43-56 ดอย: 10.1093 / biomet / 73.1.43
Goldstein H. จำกัด การทำซ้ำซ้ำโดยทั่วไปที่เป็นกลางโดยทั่วไปการประมาณกำลังสองน้อยที่สุด Biometrika 1989; 76 (3): 622-623 ดอย: 10.1093 / biomet / 76.3.622
สำหรับข้อมูลเพิ่มเติมเกี่ยวกับสิ่งนี้และทางเลือกอื่นโปรดดูเช่น:
แพ็คเกจ lme4 ใน R ใช้น้ำหนักน้อยที่สุดกำลังสองน้อยที่สุด (IRLS) และลงโทษหนักน้อยที่สุดกำลังสองน้อยที่สุด (PIRLS) ดู PDF ได้ที่นี่:
lmer()
ฟังก์ชั่นพื้นฐานในlme4
แพ็คเกจของ R คุณจะต้องอ่านรหัส C ++ ทั้งกลุ่มเพื่อให้เข้าใจถึงการนำไปใช้ของ PIRLS lmer()
(ซึ่งอาจเป็นสิ่งที่ท้าทายสำหรับพวกเราที่ไม่ค่อยเชี่ยวชาญในการเขียนโปรแกรม C ++)
แหล่งที่ดีอีกอย่างสำหรับ "อัลกอริธึมการคำนวณ" สำหรับ HLM (อีกครั้งเท่าที่คุณมองว่าเป็นข้อกำหนดที่คล้ายคลึงกับ LMM):
อัลกอริทึมที่พวกเขารายการสำหรับการคำนวณของ LMM รวมถึง:
อัลกอริทึมที่พวกเขารายการสำหรับ GLMM รวมถึง:
อัลกอริทึมอื่น ๆ สำหรับ GLMM ที่พวกเขาแนะนำรวมถึง:
หากคุณพิจารณาว่า HLM เป็นแบบผสมเชิงเส้นคุณสามารถพิจารณาอัลกอริทึม EM หมายเหตุหลักสูตรต่อไปนี้หน้า 22-23 ระบุวิธีการใช้อัลกอริทึม EM แบบคลาสสิกสำหรับโมเดลผสม:
http://www.stat.ucla.edu/~yuille/courses/stat153/emtutorial.pdf
###########################################################
# Classical EM algorithm for Linear Mixed Model #
###########################################################
em.mixed <- function(y, x, z, beta, var0, var1,maxiter=2000,tolerance = 1e-0010)
{
time <-proc.time()
n <- nrow(y)
q1 <- nrow(z)
conv <- 1
L0 <- loglike(y, x, z, beta, var0, var1)
i<-0
cat(" Iter. sigma0 sigma1 Likelihood",fill=T)
repeat {
if(i>maxiter) {conv<-0
break}
V <- c(var1) * z %*% t(z) + c(var0) * diag(n)
Vinv <- solve(V)
xb <- x %*% beta
resid <- (y-xb)
temp1 <- Vinv %*% resid
s0 <- c(var0)^2 * t(temp1)%*%temp1 + c(var0) * n - c(var0)^2 * tr(Vinv)
s1 <- c(var1)^2 * t(temp1)%*%z%*%t(z)%*%temp1+ c(var1)*q1 -
c(var1)^2 *tr(t(z)%*%Vinv%*%z)
w <- xb + c(var0) * temp1
var0 <- s0/n
var1 <- s1/q1
beta <- ginverse( t(x) %*% x) %*% t(x)%*% w
L1 <- loglike(y, x, z, beta, var0, var1)
if(L1 < L0) { print("log-likelihood must increase, llikel <llikeO, break.")
conv <- 0
break
}
i <- i + 1
cat(" ", i," ",var0," ",var1," ",L1,fill=T)
if(abs(L1 - L0) < tolerance) {break} #check for convergence
L0 <- L1
}
list(beta=beta, var0=var0,var1=var1,Loglikelihood=L0)
}
#########################################################
# loglike calculates the LogLikelihood for Mixed Model #
#########################################################
loglike<- function(y, x, z, beta, var0, var1)
}
{
n<- nrow(y)
V <- c(var1) * z %*% t(z) + c(var0) * diag(n)
Vinv <- ginverse(V)
xb <- x %*% beta
resid <- (y-xb)
temp1 <- Vinv %*% resid
(-.5)*( log(det(V)) + t(resid) %*% temp1 )
}