ฟังก์ชั่นการวิเคราะห์องค์ประกอบหลัก (FPCA) เป็นสิ่งที่ฉันสะดุดและไม่เคยเข้าใจ มันเกี่ยวกับอะไร?
ดูที่"การสำรวจการวิเคราะห์องค์ประกอบหลักของการทำงาน" โดย Shang, 2011และฉันอ้างถึง:
PCA ประสบปัญหาร้ายแรงในการวิเคราะห์ข้อมูลการใช้งานเพราะ“ คำสาปของมิติ” (Bellman 1961) "การสาปแช่งของมิติ" มาจากข้อมูล sparsity ในพื้นที่มิติสูง แม้ว่าคุณสมบัติทางเรขาคณิตของ PCA จะยังคงใช้งานได้และแม้ว่าเทคนิคเชิงตัวเลขจะให้ผลลัพธ์ที่คงที่ แต่เมทริกซ์ความแปรปรวนร่วมตัวอย่างก็เป็นค่าประมาณที่ไม่ดีของเมทริกซ์ความแปรปรวนร่วมของประชากร เพื่อที่จะเอาชนะความยากลำบากนี้ FPCA ได้เตรียมวิธีที่ให้ข้อมูลในการตรวจสอบโครงสร้างความแปรปรวนร่วมตัวอย่างมากกว่า PCA [... ]
ฉันแค่ไม่เข้าใจ บทความนี้อธิบายถึงข้อเสียเปรียบอะไร PCA ไม่ควรจะเป็นวิธีที่ดีที่สุดในการจัดการสถานการณ์เช่น "คำสาปแห่งมิติ"?