สมมติว่าคุณกำลังวิเคราะห์ชุดข้อมูลขนาดใหญ่ที่มีการสังเกตการณ์นับพันล้านครั้งต่อวันซึ่งการสังเกตแต่ละครั้งมีตัวแปรเบาบางและตัวแปรเชิงซ้อนและตัวเลขซ้ำซ้อนสองพันรายการ สมมติว่ามีปัญหาการถดถอยหนึ่งปัญหาการจำแนกเลขฐานสองที่ไม่สมดุลและอีกหนึ่งภารกิจของ "ค้นหาว่าตัวทำนายใดที่สำคัญที่สุด" ความคิดของฉันสำหรับวิธีการแก้ไขปัญหาคือ:
ติดตั้งโมเดลการทำนายบางอย่างกับกลุ่มตัวอย่างย่อยที่มีขนาดใหญ่ขึ้นและใหญ่ขึ้น (สุ่ม) จนกระทั่ง:
การติดตั้งและตรวจสอบความถูกต้องของโมเดลกลายเป็นเรื่องยากในการคำนวณ (เช่นการใช้แล็ปท็อปของฉันช้าไม่มีเหตุผล R ไม่มีหน่วยความจำเหลือ ฯลฯ ) หรือ
การฝึกอบรมและทดสอบ RMSE หรือค่าความแม่นยำ / การเรียกคืนมีความเสถียร
หากข้อผิดพลาดในการฝึกอบรมและการทดสอบไม่คงที่ (1. ) ให้ใช้โมเดลที่ง่ายกว่าและ / หรือใช้โมเดลรุ่นมัลติคอร์หรือมัลติโหนดและรีสตาร์ทตั้งแต่ต้น
หากการฝึกอบรมและการทดสอบข้อผิดพลาดเสถียร (2. ):
หาก (เช่นฉันยังคงสามารถเรียกใช้อัลกอริทึมบนเนื่องจากยังไม่ใหญ่เกินไป) พยายามปรับปรุงประสิทธิภาพโดยการขยายพื้นที่ของฟีเจอร์หรือใช้โมเดลที่ซับซ้อนมากขึ้นและรีสตาร์ทตั้งแต่ต้น
หากเป็น 'ใหญ่' และการดำเนินการวิเคราะห์เพิ่มเติมนั้นมีค่าใช้จ่ายสูงให้วิเคราะห์ความสำคัญและสิ้นสุดของตัวแปร
ฉันวางแผนจะใช้แพคเกจเช่นbiglm
, speedglm
, multicore
และff
ในการวิจัยครั้งแรกและต่อมาใช้กลไกที่ซับซ้อนมากขึ้นและ / หรือหลายโหนด (บน EC2) เท่าที่จำเป็น
เสียงนี้เป็นวิธีการที่สมเหตุสมผลหรือไม่ถ้ามีคุณมีคำแนะนำหรือข้อเสนอแนะเฉพาะเจาะจงหรือไม่? ถ้าไม่คุณจะลองทำอะไรกับชุดข้อมูลขนาดนี้แทน?