ความน่าจะเป็นในชีวิตประจำวันเป็นเพียงวิธีการจัดการกับสิ่งแปลกปลอม (ไม่ใช่การพูดควอนตัมฟิสิกส์ที่นี่) หรือไม่?


20

ดูเหมือนว่าในความน่าจะเป็นในชีวิตประจำวัน (ไม่ใช่ฟิสิกส์ควอนตัม) ความน่าจะเป็นเป็นเพียงสิ่งที่ไม่รู้จัก ยกตัวอย่างเช่นการพลิกเหรียญ เราบอกว่ามันเป็น "สุ่ม" การเปลี่ยนแปลงของหัว 50% และมีโอกาส 50% ที่จะก้อย อย่างไรก็ตามถ้าฉันรู้ความหนาแน่นขนาดและรูปร่างของเหรียญอย่างแน่นอน ความหนาแน่นของอากาศ ด้วยแรงที่เหรียญพลิก ตรงที่วางกำลัง; ระยะทางของเหรียญกับพื้น เป็นต้นฉันจะไม่สามารถคาดการณ์ได้โดยใช้ฟิสิกส์พื้นฐานด้วยความแม่นยำ 100% ไม่ว่าจะลงบนหัวหรือก้อย ถ้าใช่ความน่าจะเป็นในสถานการณ์นี้ไม่ใช่วิธีที่ฉันจัดการกับข้อมูลที่ไม่สมบูรณ์ใช่หรือไม่

มันไม่เหมือนกันถ้าฉันสับไพ่ (ซึ่งฉันคิดอะไรเกี่ยวกับมัน) ฉันปฏิบัติตามคำสั่งของการ์ดโดยการสุ่มเพราะฉันไม่รู้ว่าคำสั่งซื้อคืออะไร แต่ก็ไม่เหมือนกับว่ามีโอกาส 1/52 ที่ไพ่ใบแรกที่ฉันจับคือ Ace of Spades - 100% คือ เอซโพดำหรือ 100% ไม่ใช่

ถ้ากลิ้งลูกเต๋าและสับไพ่ไม่สุ่มมันจะไม่ตามเครื่องกำเนิดเลขสุ่มแบบคอมพิวเตอร์ที่ไม่สุ่มเพราะถ้าฉันรู้อัลกอริทึม (และอาจเป็นตัวแปรอื่น ๆ ) ฉันรู้ว่า จำนวนจะเป็นอย่างไร


ขอบคุณล่วงหน้าสำหรับทุกคนที่ใช้เวลาในการตอบโดยเฉพาะคำถาม noob จากคนที่ไม่ใช่คณิตศาสตร์อย่างตัวฉัน ฉันไม่ต้องการที่จะไป reddit เพราะคนจำนวนมากแกล้งมีความรู้ แต่ไม่ใช่ ข้อสังเกตเพิ่มเติมเกี่ยวกับเมตา:

ครั้งแรกผมรู้ว่ามีคำถามที่คล้ายกันอยู่แล้วรับการตอบรับสุ่ม VS Unknown ดังนั้นโปรดอย่าอ้างอิงฉันถึงสิ่งนั้น ฉันคิดว่าคำถามที่ฉันจะถามนั้นแคบกว่าและมีพื้นฐานอยู่ในคณิตศาสตร์ที่เรียบง่ายกว่ามาก

ประการที่สองฉันไม่ใช่คนคณิตศาสตร์ดังนั้นโปรดยึดตัวอย่างง่ายๆและภาษาที่ไม่ใช่ด้านเทคนิค (เว้นแต่มีความจำเป็นอย่างยิ่งซึ่งในกรณีนี้แสร้งทำเป็นว่าคุณกำลังอธิบายตัวเองกับผู้อาวุโสที่มีความคิดสร้างสรรค์ปานกลางในวิทยาลัยวิชาเอกประวัติศาสตร์ศิลปะ)

ประการที่สามฉันมีความเข้าใจที่ดีเกี่ยวกับความน่าจะเป็นองค์ประกอบ นี่เป็นส่วนใหญ่เพราะฉันเล่นโป๊กเกอร์จำนวนมาก แต่ฉันเข้าใจว่าอัตราต่อรองในเกมการพนันอื่น ๆ ทำงานได้อย่างไรเช่นรูเล็ตลูกเต๋าลอตเตอรี่ ฯลฯ อีกครั้งนี่เป็นสิ่งที่พื้นฐานมากดังนั้นโปรดไม่มีฟิสิกส์ควอนตัมถ้ามันสามารถหลีกเลี่ยงได้

ประการที่สี่ไม่ใช่เพื่อให้เกิดความรู้สึกอึดอัดใจ แต่ฉันต้องการให้ผู้คนอภิปรายคำตอบสำหรับคำถามของฉันและไม่แสดงให้ฉันเห็นว่าพวกเขารู้ฉันมากแค่ไหน ฉันพูดแบบนี้เพราะฉันเห็นคนลอง "เอาชนะ" ใครบางคนในการโต้แย้งโดยตั้งใจใช้ภาษาที่ไม่จำเป็นต้องใช้เทคนิคมากเกินไปและทำให้คนอื่นสับสนด้วยคำศัพท์มากกว่าที่จะอภิปรายคำถามจริง ตัวอย่างเช่นแทนที่จะพูดว่า "คุณควรกินแอสไพรินบางตัว" พูดว่า "คุณควรทานยาแอสไพริน"


2
มีโรงเรียนหลายแห่งที่มีความคิดเกี่ยวกับการตีความความน่าจะเป็นแบบคลาสสิก (และแน่นอนว่าความขัดแย้ง) และวรรณกรรมที่น่าสนใจมากมาย en.m.wikipedia.org/wiki/Probability_interpretationsเป็นการเริ่มต้นที่ดี ความน่าจะเป็นควอนตัมก็เหมือนกัน
Tom Copeland

3
ดูการสนทนาที่เกี่ยวข้องในปรัชญาคำถาม & คำตอบ: ปรัชญา . stackexchange.com/questions/29364/ เป็นไปได้ที่การสุ่ม "จริง" มีอยู่ในระดับควอนตัมและสำหรับทุกอย่างที่อยู่เหนือเหตุการณ์จะสุ่มเท่านั้นเมื่อได้รับข้อมูลที่เรามี (หรือไม่มี) ถ้อยคำของคุณ "ดูเหมือนว่าในความเป็นไปได้ทุกวัน (ไม่ใช่ฟิสิกส์ควอนตัม) ความน่าจะเป็นเป็นเพียงสิ่งที่ไม่รู้จักแทน" ดูเหมือนจะเป็นวิธีที่ดีในการแสดงความคิดเห็นนั้น
Marius

8
ข้อความคำถามของคุณมากกว่า 50% เป็นคำพูดที่ไม่ได้ช่วยในการกำหนดคำถาม พวกเขานำหน้าคำถามที่เกิดขึ้นจริงซึ่งทำให้โพสต์ย่อยยาก ฉันใช้เสรีภาพในการเคลื่อนย้ายพวกเขาไปตลอดทางหลังจากคำถามจริง พูดตามตรงฉันคิดว่าส่วนทั้งหมดนี้สามารถลบได้ แต่นั่นก็ขึ้นอยู่กับคุณแล้ว +1 สำหรับคำถามนั้น
อะมีบาพูดว่า Reinstate Monica

1
@Marius +1 สำหรับลิงก์และสำหรับสรุป ฉันแค่เพิ่มว่าลักษณะของการสุ่มในระดับควอนตัมเป็นที่ถกเถียงกันเช่นกัน
อะมีบาพูดว่า Reinstate Monica

อะมีบาฉันซาบซึ้งที่คุณขยับหัวข้อลง แต่ฉันไม่อยากให้มันถูกลบ ฉันรู้สึกว่าประเด็นแรกมีความจำเป็นเพราะฉันคิดว่ามีใครบางคนจะเชื่อมโยงฉันกับคำถามนั้น ที่สองและสามเป็นสิ่งจำเป็นดังนั้นผู้คนจะเข้าใจว่าฉันแทบไม่มีความรู้เรื่องคณิตศาสตร์เกินกว่าแนวคิดพื้นฐานและปรับคำอธิบายตามนั้น ข้อที่สี่มีความจำเป็นน้อยที่สุด แต่ฉันคิดว่ามันป้องกันคำตอบบางอย่างจากการใช้คำศัพท์ที่ฉันไม่คุ้นเคย
N00ber

คำตอบ:


27

คุณพูดถูกความน่าจะเป็นเป็นตัวชี้วัดความไม่แน่นอน เหรียญพลิกเป็นตัวอย่างที่ดีเป็นที่กล่าวถึงในหัวข้ออื่น การโยนเหรียญเป็นกระบวนการทางกายภาพที่กำหนดได้ ในความเป็นจริงมีคนที่เรียนรู้ที่จะพลิกเหรียญด้วยวิธีการดังกล่าวเพื่อให้ได้ผลลัพธ์ที่พวกเขาต้องการและเป็นเครื่องจักรที่สร้างการพลิกเหรียญที่กำหนดขึ้นและแน่นอน ให้ฉันอีกครั้งอ้าง E. Borel (หลังจาก Bruno de Finetti ความน่าจะเป็น: บทความสำคัญเกี่ยวกับทฤษฎีความน่าจะเป็นและคุณค่าของวิทยาศาสตร์ ):

"หนึ่งสามารถเดิมพันในหัวหรือก้อยหลังจากเหรียญโยนไปแล้วอยู่ในอากาศเพื่อให้การเคลื่อนไหวของมันถูกกำหนดแล้วเรายังสามารถเดิมพันหลังจากเหรียญได้ลงบนเงื่อนไขเดียวที่ไม่เห็นสิ่งที่ อีกด้านหนึ่งก็มีที่ดิน. น่าจะไม่ได้นอนในความจริงที่ว่าเหตุการณ์จะไม่กำหนด (ในความรู้สึกมากหรือน้อยปรัชญาของคำ) แต่ในการไร้ความสามารถของเราที่จะคาดการณ์สิ่งที่เป็นไปได้ที่จะเกิดขึ้นหรือที่จะรู้ว่าสิ่งที่เป็นไปได้ที่สถานที่ ."

เพื่อให้สิ่งที่ซับซ้อนมากยิ่งขึ้นมี Bayesians ที่ตีความน่าจะเป็นระดับของความเชื่อ ในความเป็นจริงมีการตีความที่แตกต่างของความน่าจะเป็น เมื่อสิ่งที่เป็นไปไม่ได้หรือมากไม่น่ามากที่เรากำหนดให้เป็นศูนย์ความน่าจะเป็นมัน (ตรวจสอบที่นี่ , ที่นี่และที่นี่ ) เมื่อมันเป็นบางอย่างที่น่าจะมีค่าเท่ากับความสามัคคี เมื่อพูดถึงเหตุการณ์ที่เป็นไปไม่ได้และไม่น่าเป็นไปได้เท่านั้นความน่าจะเป็นลดลงเป็นตรรกะ เมื่อพิจารณาจากเหตุการณ์ความไม่แน่นอนมันอาจจะเห็นเป็นส่วนขยายของตรรกะ

แต่ความน่าจะเป็นไม่ได้ใช้แทน "ไม่ทราบ" มันเป็นตัวชี้วัดว่ามีแนวโน้ม "ไม่ทราบ" เท่าไหร่ มันอาจถูกตีความในรูปแบบที่แตกต่างกันดังนั้นวัดสิ่งต่าง ๆ เล็กน้อย แต่ในที่สุดมันก็ช่วยให้เราทราบปริมาณที่ไม่รู้จัก ความน่าจะเป็นช่วยให้เราสามารถพูดเกี่ยวกับความเป็นจริงได้มากขึ้นจากนั้นบางสิ่งก็คือ "ไม่ทราบ" หรือ "ไม่แน่นอน" แต่มันไม่ได้เป็นเพียงเกี่ยวกับการวัดความน่าจะช่วยให้เราสามารถที่จะทำให้การคาดการณ์ได้อย่างแม่นยำประเมินความคาดหวังและความเสี่ยงหรือใช้Bayes ทฤษฎีบทที่จะรวมความน่าจะเป็นที่จะให้ตัวอย่างเพียงไม่กี่ ในความเป็นจริงตามที่แสดงโดยDaniel KahnemanและAmos Tverskyคนยากจนในการให้เหตุผลเกี่ยวกับความไม่แน่นอนและความเสี่ยงในขณะที่การใช้เหตุผลอย่างเป็นทางการและมีความน่าจะเป็นที่ป้องกันเราจากอคติของเรา


+1 ดีมากและมีลิงก์จำนวนมากไปยัง (ดี) อ่านเพิ่มเติม
อะมีบาพูดว่า Reinstate Monica

4
แน่นอนจะให้ +1 นี้ยกเว้น "เพื่อให้สิ่งที่เลวร้ายยิ่งขึ้นมี Bayesians.."
Darren

6
@Darren "ทำสิ่งที่เลวร้ายยิ่ง" เป็นประชดถ้าคุณดูหัวข้อที่เชื่อมโยงคุณจะสังเกตเห็นว่ามีคำตอบหลายอย่างของฉันที่หารือแนวทาง Bayesian ฉันคิดว่าตัวเองเป็นชาว Bayesian ด้วยใจ
ทิม

9

มีประวัติของความไม่แน่นอนที่ยาวนานและลึกและปริมาณของความไม่แน่นอนที่มีคำเช่น "ความน่าจะเป็นอัตนัย" ผลที่สำคัญคือคอคส์ทฤษฎีบท เขาวางคุณสมบัติสามประการของการวัดหรือการแสดงถึงความไม่แน่นอน:

  • การหารและการเปรียบเทียบ - ความเป็นไปได้ของข้อเสนอนั้นเป็นจำนวนจริงและขึ้นอยู่กับข้อมูลที่เรามีเกี่ยวกับข้อเสนอ
  • สามัญสำนึก - ความน่าเชื่อถือควรมีความแตกต่างอย่างสมเหตุสมผลกับการประเมินความน่าเชื่อถือในแบบจำลอง
  • ความสอดคล้อง - หากความเป็นไปได้ของข้อเสนอสามารถได้รับในหลาย ๆ ทางผลลัพธ์ทั้งหมดจะต้องเท่ากัน

A A


1
ฉันคิดว่าฉันเข้าใจข้อเสนอ: (1) ว่าข้อเสนอใด ๆ , P, เป็นจริงคือจำนวนตั้งแต่ 0.0 ถึง 1.0, (2) คุณควรใช้สามัญสำนึก (เช่นตรรกะพื้นฐาน) เมื่อคุณประเมินโอกาสของ P ภายในระบบที่กำหนด และ (3) หากมีหลายวิธีในการรับผลลัพธ์ผลลัพธ์ทั้งหมดจะต้องเหมือนกัน อย่างไรก็ตามฉันไม่เห็นว่าสิ่งนี้ตอบคำถามของฉันได้อย่างไร นอกจากนี้ความแตกต่างระหว่างความน่าเชื่อถือและความน่าจะเป็นคืออะไร
N00ber

1
นี่ดูเหมือนจะอธิบายว่าระบบความน่าจะเป็นควรทำงานอย่างไร แต่ฉันถามถึงสิ่งที่น่าจะเป็น
N00ber

ผลลัพธ์ของค็อกซ์คือความไม่แน่นอนทุกรูปแบบ - ความน่าจะเป็นส่วนตัวความมั่นใจและอื่น ๆ - ในที่สุดก็สามารถแสดงออกได้ในภาษาของความน่าจะเป็น เรามีคำศัพท์มากมายในภาษาธรรมชาติ (รวมถึงภาษาธรรมชาติต่าง ๆ ) แต่เมื่อคุณต้องการคำนวณบางอย่างและทำการทดลองคุณต้องใช้คำศัพท์ความน่าจะเป็น สิ่งที่ผลลัพธ์ของเขาแสดงก็คือแนวคิดของ "ตรรกะคลุมเครือ" (เมื่อแตกต่างจากความน่าจะเป็น) ไม่ได้เพิ่มความเข้าใจในความไม่แน่นอนของเรา
David G. Stork

ฉันเพิ่งอ่านคำตอบของคุณอีกครั้งและจริง ๆ แล้วมันจะตอบคำถามของฉันแม้ว่าจะเป็นวิธีที่เข้าใจยากโดยไม่จำเป็น
N00ber

3

คำตอบสั้น ๆ คือใช่ บทแรกของวิทยานิพนธ์ปริญญาเอกนี้มีตัวอย่างพร้อมการจำลองการพลิกพินการโยน ผลลัพธ์ 'pin-up' หรือ 'pin-down' ขึ้นอยู่กับตัวแปรหลายตัว (เช่นความเร็วในการหมุนและขนาด) ซึ่งเราไม่ได้ควบคุมในชีวิตประจำวัน ดังนั้นในการจำลองระบบจะถูกกำหนด: ให้ตัวแปรอินพุตผลลัพธ์สามารถคำนวณได้ แต่เมื่อพลิกพินบนโต๊ะของคุณคุณไม่ทราบค่าที่แน่นอนดังนั้นคุณสามารถประมาณความน่าจะเป็นของการพินลง 'พินอัพ' หรือ 'พินดาวน์' เท่านั้น

ในฐานะที่เป็นคำพูดสุดท้ายเราก็ทราบว่าส่วนใหญ่หากไม่สามารถอธิบายทุกระบบในโลกแห่งความเป็นจริง (อย่างน้อยก็ในหลักการ) ในแง่ของระบบพลวัตและการตีความของ 'สุ่ม' ที่เกิดขึ้นจากความไม่แน่นอน สถานะของระบบใช้แม้แต่กับระดับควอนตัม


1

การพูดควอนตัมฟิสิกส์อาจช่วยให้คุณเห็นคุณค่าของปัญหาและความขัดแย้ง รับความคิดเห็นของ lemur เป็นตัวอย่าง:

... แต่สิ่งเหล่านี้ทำร้ายความรู้สึกทางปรัชญาของฉัน: QM เป็นวิธีของ Nature ในการหลีกเลี่ยงการจัดการกับบิตจำนวนไม่ จำกัด

แต่มีความขัดแย้งอยู่ที่นี่เนื่องจากดูเหมือนว่าธรรมชาติยังคงต้องใช้จำนวนบิตไม่ จำกัด เพียงเพื่อเขียนความน่าจะเป็นที่แน่นอนของเหตุการณ์ ปัญหาเดียวกันที่เกิดขึ้นสำหรับความน่าจะเป็นในชีวิตประจำวัน: การพยากรณ์อากาศอาจทำนายความน่าจะเป็นของการเร่งรัดสำหรับวันต่อไปในบางพื้นที่ในช่วงระยะเวลาหนึ่งเป็น 30% แต่ความน่าจะเป็นนี้ช่างแม่นยำแค่ไหน? หมายความว่าความน่าจะเป็นที่แท้จริงอยู่ระหว่าง 25% ถึง 35% หรือไม่ มันสมเหตุสมผลหรือไม่ที่จะพูดถึงความแม่นยำของความน่าจะเป็น ความน่าจะเป็นสำหรับจำนวนหนึ่งในรูเล็ตคือ 1/37 แต่เราสามารถพูดบางอย่างเกี่ยวกับความแม่นยำของความน่าจะเป็นนั้นได้หรือไม่? อย่างน้อยหนึ่งคนนี้สามารถทดสอบสมมติฐานเกี่ยวกับความแม่นยำของความน่าจะเป็นที่กำหนดโดยทำการทดลองซ้ำหลายครั้งอย่างเพียงพอ

แม้ว่าจะไม่ได้หมายความอย่างนั้นWager ของ Pascalนำเสนอความขัดแย้งแบบเดียวกัน มันอธิบายการทดลองที่ไม่สามารถทำซ้ำได้และสันนิษฐานว่าใครสามารถกำหนดความน่าจะเป็นเช่น 0.000001 หรือ 1e-3000 ให้กับผลลัพธ์บางอย่างโดยไม่ต้องตั้งคำถามว่าความน่าจะเป็นที่แม่นยำนั้นจะสมเหตุสมผลในบริบทนี้หรือไม่

กระดาษโดย Ole ปีเตอร์สและเมอร์รีย์เกลล์ แมนน์ (ที่มีชื่อเสียงนักฟิสิกส์ ) เรียกความคิดเหล่านั้น ...


ความน่าจะเป็นต่อความน่าจะเป็น "ไม่ถูกต้อง" หรือไม่ฉันว่าคุณหมายถึงการประมาณความน่าจะเป็นบางอย่าง .. ? คุณสามารถพูดคุยเกี่ยวกับความถูกต้องของการคาดการณ์หรือความแม่นยำสำหรับรูปแบบสม่ำเสมอของผลลัพธ์รูเล็ตเป็นต้น แต่นี่ไม่ใช่ความแม่นยำของความน่าจะเป็น
ทิม

@ เวลาฉันหมายถึงสถานการณ์ที่เป็นรูปธรรมที่ฉันระบุซึ่งเป็นเรื่องปกติที่ระบุความน่าจะเป็น ใน QM หนึ่งสามารถคำนวณความน่าจะเป็นสำหรับผลลัพธ์บางอย่างการพยากรณ์อากาศระบุความน่าจะเป็นของการตกตะกอนมีความน่าจะเป็นในรูเล็ตและการเดิมพันของ Pascal สันนิษฐานว่ามีความเป็นไปได้ที่พระเจ้ามีอยู่ ... ฉันคิดว่า กว่าคนอื่น ๆ (โดยส่วนใหญ่ขึ้นอยู่กับความถี่และวิธีการทดลองที่ซื่อสัตย์สำหรับการทดสอบความน่าจะเป็นที่สามารถทำได้และทำซ้ำ)
โทมัสคลิมเพล

แต่คุณกำลังพูดถึงความน่าจะเป็นโดยประมาณ
ทิม

@Tim ฉันกำลังคิดเกี่ยวกับการทดสอบความน่าจะเป็น (เพื่อความแม่นยำที่กำหนด) จากนั้นประมาณความน่าจะเป็น การทดสอบขึ้นอยู่กับคุณสมบัติเพิ่มเติมเช่นความเป็นอิสระ แต่หวังว่าจะไม่ทำการทดลองซ้ำ ๆ กัน (เช่นความน่าจะเป็นของการตกตะกอนไม่สามารถทดสอบได้เช่น) ฉันมาจากภูมิหลังแบบลอจิคัลและมีบางสิ่งที่คล้ายคลึงกับความหมายของเกมจากตรรกะเชิงตรรกะในใจ แต่คำตอบของฉันที่นี่จริงๆประกอบด้วยสถานการณ์ที่ระบุไว้ไม่ใช่สิ่งที่ฉันมีอยู่ในใจหรือคิดว่าตัวเองเกี่ยวกับการแก้ไขความขัดแย้งที่เป็นไปได้
โทมัสคลิมเพล

1
แต่คุณสมบัติเหล่านั้นที่คุณกำลังพูดถึงคือคุณสมบัติของตัวแบบเชิงสถิติไม่ใช่ความน่าจะเป็น ตัวอย่าง: ลองนึกภาพเหรียญที่ยุติธรรมที่มีหัวความน่าจะเป็น = ก้อย = 0.5 ความน่าจะเป็นที่นี่คือ 0.5 ไม่มีความแม่นยำที่สามารถวัดได้ที่นี่ คุณสามารถโยนมันหลายครั้งและเปรียบเทียบความน่าจะเป็นโดยประมาณที่ได้รับข้อมูลด้วยค่า 0.5 แต่สิ่งนี้จะบอกคุณเกี่ยวกับความแม่นยำในการวัดและการประมาณของคุณเท่านั้น
ทิม
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.