การถดถอยเชิงเส้นด้วยตัวแปรที่ขึ้นอยู่กับว่าเป็นอัตราส่วน


10

ฉันกำลังถดถอยเชิงเส้นตรงที่ตัวแปรตามเป็นอัตราส่วนที่สามารถอยู่ในช่วงตั้งแต่ 0.01 ถึง 100

มันจะโอเคไหมที่จะใช้บันทึกของตัวแปรตามและการถดถอยของมัน? ฉันกำลังจับคู่ผลการศึกษาและนั่นคือสิ่งที่พวกเขาทำ

อะไรคือความแตกต่างของการบันทึกเทียบกับการใช้อัตราส่วนตามที่เป็นอยู่?


ฉันกำลังมองหาการประเมินราคาบ้าน ตัวแปรอิสระของฉันคือราคาบ้านที่ประเมินแล้วหารด้วยราคาขาย ตัวแปรตามของฉันคือการแข่งขันหลายประเภท (ร้อยละสีดำขาวสเปนและเอเชีย) และรายได้ครัวเรือนเฉลี่ย ฉันพบว่าพื้นที่สำรวจสำมะโนประชากรที่มีคนผิวดำร้อยละขนาดใหญ่มีการประเมินอัตราส่วนราคาขายสูงกว่าพื้นที่อื่น ๆ
แอรอน Kreider

ทำไมคุณไม่ใช้การถดถอยโลจิสติก? คุณสามารถกำหนดอัตราส่วนเนื่องจากตัวแปรตามของคุณคือแพ็คเกจทางสถิติจำนวนมาก
statnoobie1

1
การถดถอยโลจิสติกมักใช้สำหรับค่าไบนารีหรือสัดส่วน (ระหว่าง 0 ถึง 1) ไม่สามารถใช้งานได้ที่นี่เนื่องจากอัตราส่วนสามารถเกิน 1
Max Ghenis

คำตอบ:


9

เมื่อคุณใช้บันทึกของอัตราส่วนโปรดจำไว้ว่ามันคืออะไร: ใช้ค่านี้เป็นตัวแปรตามหรือไม่ขึ้นอยู่กับปัญหาของคุณ?log(ab)=log(a)log(b)

ทีนี้, ในการใช้อัตราส่วนดิบ - นี่อาจเป็นปัญหาได้ Kronmal 1993ทำให้อาร์กิวเมนต์ที่การถดถอยมีอัตราส่วนเป็นตัวแปรตาม: ซึ่งสามารถอธิบายได้ว่า เป็นแบบจำลองของ
YZ=α0+αXX+ϵ

Y=Z1nα0+ZXαX+Z1ϵ

Y=β0+βXX+Z1nα0+ZXαX+Z1ϵ

อาคา ...

  • ถอยหลังตัวเลขโดยตัวแปรอิสระต้นฉบับส่วนและตัวหารเวลาตัวแปรเดิม
  • การลดน้ำหนักโดยตัวหาร (ผกผัน)

เฉพาะในกรณีที่และเป็นศูนย์จะเป็นรูปแบบการถดถอยดั้งเดิมที่ถูกต้องβ0βX

Caveat - ฉันไม่เชื่อว่าฉันมีความเข้าใจที่สมบูรณ์ของอัตราส่วนเช่นกัน


คุณสมมติว่า Z คงที่หรือไม่? ฉันมี 27,000 ราย (คุณสมบัติที่รู้จัก) และ Y (ราคาประเมิน) และ Z (ราคาขาย) แตกต่างกันไปในแต่ละคน
แอรอน Kreider

ไม่ Z เป็นเมทริกซ์ทแยงมุมเมทริกซ์โดยเส้นทแยงมุมเป็นราคาขายของคุณ สัญกรณ์ของฉันในสมการแรกอาจทำให้สับสนเพราะมันไม่ได้ใช้สัญกรณ์เมทริกซ์ จะสอดคล้องกับส่วนที่เหลือ Z1Y=α0+αXX+ϵ
เลียนแบบ

ตกลง. ฉันดูวิธีการที่แนะนำในคำถามที่เชื่อมโยงของคุณและพวกเขาก็เข้าท่า ฉันไม่ทราบเกี่ยวกับสิ่งนี้พอที่จะแนะนำพวกเขาจริง ๆ ทางเดียว แต่ถ้ามีคนยืนยันคำแนะนำของคุณมากกว่าที่ฉันจะลองพวกเขา
แอรอน Kreider
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.