ความสัมพันธ์ของตัวแปรสุ่มแบบล็อก - ปกติ


16

กำหนดตัวแปรสุ่มปกติX1และX2มีสัมประสิทธิ์สหสัมพันธ์ฉันจะค้นหาความสัมพันธ์ระหว่างตัวแปรสุ่ม lognormalและอย่างไรρY1Y2

Y1=a1exp(μ1T+TX1)

Y2=a2exp(μ2T+TX2)

Now, if X1=σ1Z1 and X2=σ1Z2, where Z1 and Z2 are standard normals, from the linear transformation property, we get:

Y1=a1exp(μ1T+Tσ1Z1)

Y2=a2exp(μ2T+Tσ2(ρZ1+1ρ2Z2)

Now, how to go from here to compute correlation between Y1 and Y2?


@user862, hint: use chracteristic function of bivariate normal.
mpiktas

2
See equation (11) in stuart.iit.edu/shared/shared_stuartfaculty/whitepapers/… (but watch out for the awful typesetting).
whuber

คำตอบ:


19

I assume that X1N(0,σ12) and X2N(0,σ22). Denote Zi=exp(TXi). Then

log(Zi)N(0,Tσi2)
so Zi are log-normal. Thus

EZi=exp(Tσi22)var(Zi)=(exp(Tσi2)1)exp(Tσi2)
and
EYi=aiexp(μiT)EZivar(Yi)=ai2exp(2μiT)var(Zi)

Then using the formula for m.g.f of multivariate normal we have

EY1Y2=a1a2exp((μ1+μ2)T)Eexp(TX1+TX2)=a1a2exp((μ1+μ2)T)exp(12T(σ12+2ρσ1σ2+σ22))
So
cov(Y1,Y2)=EY1Y2EY1EY2=a1a2exp((μ1+μ2)T)exp(T2(σ12+σ22))(exp(ρσ1σ2T)1)

Now the correlation of Y1 and Y2 is covariance divided by square roots of variances:

ρY1Y2=exp(ρσ1σ2T)1(exp(σ12T)1)(exp(σ22T)1)

Note that as long as the approximation ex1+x is valid on the final formula found above one has ρY1Y2ρ.
danbarros
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.