SurveyMonkey เพิกเฉยต่อข้อเท็จจริงที่ว่าคุณได้รับตัวอย่างที่ไม่ใช่แบบสุ่มหรือไม่?


11

SurveyMonkey มีขั้นตอนและแผนภูมิสำหรับคุณในการหาขนาดตัวอย่างที่คุณต้องการสำหรับระยะขอบข้อผิดพลาดหรือช่วงความเชื่อมั่นที่กำหนดตามขนาดประชากรของคุณ

ขนาดตัวอย่าง SurveyMonkey

แผนภูมินี้ไม่สนใจความจริงที่ว่าคุณจะไม่ได้รับตัวอย่างแบบสุ่มเนื่องจากคุณจะได้รับเฉพาะผู้ที่สนใจตอบแบบสอบถามเท่านั้น

ฉันได้รับคำเตือนเมื่อฉันพิมพ์สิ่งนี้ว่าคำถามดูเหมือนเป็นอัตวิสัยดังนั้นฉันอาจไม่ได้ถามอย่างถูกต้อง มันไม่ได้เกี่ยวกับ SurveyMonkey แต่เป็นคำถามทั่วไป - คุณสามารถคำนวณช่วงความมั่นใจจากข้อมูลการตอบกลับโดยสมัครใจโดยใช้เทคนิคขั้นสูงที่ฉันไม่รู้หรือไม่?

ในการสำรวจความคิดเห็นหรือการสำรวจระดับชาติเห็นได้ชัดว่าพวกเขาจะต้องจัดการกับปัญหานี้ การศึกษาของฉันไม่ได้ครอบคลุมเทคนิคการสุ่มตัวอย่างแบบสำรวจในเชิงลึก แต่ฉันคิดว่ามันเกี่ยวข้องกับการรวบรวมข้อมูลประชากรและการใช้เพื่อทราบว่าตัวแทนตัวอย่างของคุณมีวิธีอย่างไร

แต่นอกเหนือจากนั้นสำหรับการสำรวจออนไลน์อย่างง่ายพวกเขาเพียงแค่สมมติว่าคนที่ใส่ใจที่จะตอบสนองนั้นเป็นกลุ่มตัวอย่างแบบสุ่มของประชากรหรือไม่

คำตอบ:


10

คำตอบสั้น ๆ คือใช่: Monkey Monkey ไม่สนใจอย่างที่คุณได้รับตัวอย่างมา สำรวจลิงไม่ฉลาดพอที่จะคิดว่าสิ่งที่คุณรวบรวมไม่ได้เป็นตัวอย่างความสะดวกสบาย แต่แทบทุกสำรวจสำรวจลิงเป็นตัวอย่างที่สะดวก สิ่งนี้จะสร้างความคลาดเคลื่อนอย่างมากในสิ่งที่คุณคาดการณ์ว่าจะไม่มีการสุ่มตัวอย่างเลี่ยงได้อย่างแท้จริง ในอีกด้านหนึ่งคุณสามารถกำหนดประชากร (และความสัมพันธ์ในนั้น) คุณจะได้รับจาก SRS ในอีกทางหนึ่งคุณสามารถกำหนดจำนวนประชากรที่กำหนดโดยการสุ่มตัวอย่างที่ไม่ใช่แบบสุ่มของคุณนั่นคือการเชื่อมโยงที่คุณสามารถทำได้ประมาณการ (และกฎพลังงานถือสำหรับค่าดังกล่าว) มันขึ้นอยู่กับคุณในฐานะนักวิจัยเพื่อหารือเกี่ยวกับความคลาดเคลื่อนและให้ผู้อ่านตัดสินใจได้อย่างแม่นยำว่าตัวอย่างที่ไม่สุ่มนั้นสามารถประมาณแนวโน้มที่แท้จริงได้อย่างไร

Biasn=θθ^nθ^pθθ^pθในทฤษฎีความน่าจะเป็น การศึกษาผู้เชี่ยวชาญด้านการออกแบบ (เช่นนักระบาดวิทยา) เลือกนิสัยที่ไม่ดีในการเรียก "อคติ" ที่ไม่คงเส้นคงวา ในกรณีนี้มันเลือกอคติหรืออคติอาสาสมัคร แน่นอนว่ามันเป็นรูปแบบของความลำเอียง แต่ความไม่สอดคล้องก็หมายความว่าไม่มีการสุ่มตัวอย่างจำนวนหนึ่งที่จะแก้ไขปัญหาได้

ในการประเมินการเชื่อมโยงระดับประชากรจากข้อมูลตัวอย่างความสะดวกสบายคุณจะต้องระบุกลไกการสุ่มตัวอย่างความน่าจะเป็นที่ถูกต้องและใช้น้ำหนักความน่าจะเป็นแบบผกผันในการประมาณทั้งหมดของคุณ ในสถานการณ์ที่ไม่ค่อยเกิดขึ้น การระบุกลไกดังกล่าวเป็นไปไม่ได้ในทางปฏิบัติ เวลาที่สามารถทำได้คือในกลุ่มของบุคคลที่มีข้อมูลก่อนหน้านี้ที่ได้รับการทาบทามให้กรอกแบบสอบถาม ความน่าจะเป็นแบบไม่ตอบสนองนั้นสามารถประมาณได้ว่าเป็นหน้าที่ของข้อมูลก่อนหน้านั้นเช่นอายุเพศ SES, ... การให้น้ำหนักช่วยให้คุณมีโอกาสคาดการณ์ว่าผลลัพธ์ที่ได้จะเป็นอย่างไรในประชากรที่ไม่ตอบกลับ การสำรวจสำมะโนประชากรเป็นตัวอย่างที่ดีของการมีส่วนร่วมของน้ำหนักความน่าจะเป็นผกผันสำหรับการวิเคราะห์ดังกล่าว


2
คุณช่วยอธิบายเพิ่มเติมเล็กน้อยเกี่ยวกับความรู้สึกซึ่งตัวอย่างความสะดวกสบายอาจถูกพิจารณาว่าไม่สอดคล้องกัน แต่ไม่ลำเอียง ? ในอดีตตัวอย่างความสะดวกสบายจำนวนมากกลายเป็นลำเอียงอย่างรุนแรง (และ "ลำเอียง" เป็นคำที่ผู้คนเคยอธิบายไว้อย่างแม่นยำ): แบบสำรวจความคิดเห็นวรรณกรรมจากปี 1936อาจเป็นตัวอย่างที่มีชื่อเสียงที่สุด
whuber

1
@whuber ให้อภัยการใช้คำศัพท์ที่ "ไม่สอดคล้อง" ของฉัน อคติเป็นสิ่งที่ฉันคิดว่าจะหายไปในกลุ่มตัวอย่างขนาดใหญ่ในขณะที่การประมาณการที่ไม่สอดคล้องกันไม่เคยรวมกันเป็นกลุ่มตัวอย่างขนาดใหญ่ ในทฤษฎีโพรบตัวอย่างของตัวประมาณค่าที่ไม่สอดคล้องกันนั้นมีอยู่น้อยและอยู่ห่างไกลกัน แต่จากมุมมองการออกแบบการศึกษาที่พวกเขาปลูกขึ้นตลอดเวลา น่าสนใจนักระบาดวิทยามักเรียกกันว่า "อคติ" (เช่นการเลือกอคติ) แต่คำถามโปสเตอร์ดูเหมือนจะแนะนำว่า "การสุ่มตัวอย่างมากขึ้น" จะช่วยลดอคติได้เช่นเดียวกับกรณีที่มีทฤษฎีความน่าจะเป็นแบบอคติ
AdamO

ฉันไม่แน่ใจว่าฉันเข้าใจทุกอย่างดังนั้นขอให้ฉันมุ่งความสนใจไปที่ส่วนเล็ก ๆ น้อย ๆ : คุณ (หรือคุณไม่) ยืนยันว่าตัวอย่างที่ [ใหญ่กว่า] สะดวกกว่าลดอคติ? ฉันหวังว่าคุณจะไม่ได้เพราะแน่นอนว่าเป็นเท็จ! (นี่คือเหตุผลหนึ่งที่การสำรวจย่อยทางวรรณกรรมนั้นมีชื่อเสียง: เป็นหนึ่งในการดำเนินการที่ใหญ่ที่สุดเท่าที่เคยมีมาและจัดแสดงหนึ่งในอคติที่ใหญ่ที่สุดเช่นกัน)
whuber

5
ไม่แน่นอน! การสุ่มตัวอย่างมากขึ้นจะไม่กำจัดอคติที่อยู่ภายในนั้น นั่นคือปัญหาที่นี่ โปสเตอร์ที่มีความสนใจในการใช้พลังงานสำหรับการประเมินการเชื่อมโยงกับประชากรกลุ่มตัวอย่าง nonrandom และจุดของฉันคือการที่คุณมักจะมี 0 อำนาจที่จะประเมินว่า (ยกเว้นกรณีที่มากความระมัดระวังและความซับซ้อนของกลไกการถ่วงน้ำหนักที่ถูกว่าจ้าง)
AdamO

1
ขอบคุณสำหรับความคิดเห็นล่าสุด; มันเป็นการเคลียร์บางส่วนของคำตอบของคุณที่ฉันอาจตีความผิด (+1)
whuber
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.