การใช้ biplot ของค่าที่ได้จากการวิเคราะห์องค์ประกอบหลักเป็นไปได้ที่จะสำรวจตัวแปรอธิบายที่ประกอบกันเป็นองค์ประกอบหลัก นี่เป็นไปได้ไหมกับการวิเคราะห์จำแนกเชิงเส้น?
ตัวอย่างที่มีให้ใช้ข้อมูลคือ "ข้อมูล Iris Data ของ Edgar Anderson" ( http://en.wikipedia.org/wiki/Iris_flower_data_set ) นี่คือข้อมูลม่านตา :
  id  SLength   SWidth  PLength   PWidth species 
   1      5.1      3.5      1.4       .2 setosa 
   2      4.9      3.0      1.4       .2 setosa 
   3      4.7      3.2      1.3       .2 setosa 
   4      4.6      3.1      1.5       .2 setosa 
   5      5.0      3.6      1.4       .2 setosa 
   6      5.4      3.9      1.7       .4 setosa 
   7      4.6      3.4      1.4       .3 setosa 
   8      5.0      3.4      1.5       .2 setosa 
   9      4.4      2.9      1.4       .2 setosa 
  10      4.9      3.1      1.5       .1 setosa 
  11      5.4      3.7      1.5       .2 setosa 
  12      4.8      3.4      1.6       .2 setosa 
  13      4.8      3.0      1.4       .1 setosa 
  14      4.3      3.0      1.1       .1 setosa 
  15      5.8      4.0      1.2       .2 setosa 
  16      5.7      4.4      1.5       .4 setosa 
  17      5.4      3.9      1.3       .4 setosa 
  18      5.1      3.5      1.4       .3 setosa 
  19      5.7      3.8      1.7       .3 setosa 
  20      5.1      3.8      1.5       .3 setosa 
  21      5.4      3.4      1.7       .2 setosa 
  22      5.1      3.7      1.5       .4 setosa 
  23      4.6      3.6      1.0       .2 setosa 
  24      5.1      3.3      1.7       .5 setosa 
  25      4.8      3.4      1.9       .2 setosa 
  26      5.0      3.0      1.6       .2 setosa 
  27      5.0      3.4      1.6       .4 setosa 
  28      5.2      3.5      1.5       .2 setosa 
  29      5.2      3.4      1.4       .2 setosa 
  30      4.7      3.2      1.6       .2 setosa 
  31      4.8      3.1      1.6       .2 setosa 
  32      5.4      3.4      1.5       .4 setosa 
  33      5.2      4.1      1.5       .1 setosa 
  34      5.5      4.2      1.4       .2 setosa 
  35      4.9      3.1      1.5       .2 setosa 
  36      5.0      3.2      1.2       .2 setosa 
  37      5.5      3.5      1.3       .2 setosa 
  38      4.9      3.6      1.4       .1 setosa 
  39      4.4      3.0      1.3       .2 setosa 
  40      5.1      3.4      1.5       .2 setosa 
  41      5.0      3.5      1.3       .3 setosa 
  42      4.5      2.3      1.3       .3 setosa 
  43      4.4      3.2      1.3       .2 setosa 
  44      5.0      3.5      1.6       .6 setosa 
  45      5.1      3.8      1.9       .4 setosa 
  46      4.8      3.0      1.4       .3 setosa 
  47      5.1      3.8      1.6       .2 setosa 
  48      4.6      3.2      1.4       .2 setosa 
  49      5.3      3.7      1.5       .2 setosa 
  50      5.0      3.3      1.4       .2 setosa 
  51      7.0      3.2      4.7      1.4 versicolor 
  52      6.4      3.2      4.5      1.5 versicolor 
  53      6.9      3.1      4.9      1.5 versicolor 
  54      5.5      2.3      4.0      1.3 versicolor 
  55      6.5      2.8      4.6      1.5 versicolor 
  56      5.7      2.8      4.5      1.3 versicolor 
  57      6.3      3.3      4.7      1.6 versicolor 
  58      4.9      2.4      3.3      1.0 versicolor 
  59      6.6      2.9      4.6      1.3 versicolor 
  60      5.2      2.7      3.9      1.4 versicolor 
  61      5.0      2.0      3.5      1.0 versicolor 
  62      5.9      3.0      4.2      1.5 versicolor 
  63      6.0      2.2      4.0      1.0 versicolor 
  64      6.1      2.9      4.7      1.4 versicolor 
  65      5.6      2.9      3.6      1.3 versicolor 
  66      6.7      3.1      4.4      1.4 versicolor 
  67      5.6      3.0      4.5      1.5 versicolor 
  68      5.8      2.7      4.1      1.0 versicolor 
  69      6.2      2.2      4.5      1.5 versicolor 
  70      5.6      2.5      3.9      1.1 versicolor 
  71      5.9      3.2      4.8      1.8 versicolor 
  72      6.1      2.8      4.0      1.3 versicolor 
  73      6.3      2.5      4.9      1.5 versicolor 
  74      6.1      2.8      4.7      1.2 versicolor 
  75      6.4      2.9      4.3      1.3 versicolor 
  76      6.6      3.0      4.4      1.4 versicolor 
  77      6.8      2.8      4.8      1.4 versicolor 
  78      6.7      3.0      5.0      1.7 versicolor 
  79      6.0      2.9      4.5      1.5 versicolor 
  80      5.7      2.6      3.5      1.0 versicolor 
  81      5.5      2.4      3.8      1.1 versicolor 
  82      5.5      2.4      3.7      1.0 versicolor 
  83      5.8      2.7      3.9      1.2 versicolor 
  84      6.0      2.7      5.1      1.6 versicolor 
  85      5.4      3.0      4.5      1.5 versicolor 
  86      6.0      3.4      4.5      1.6 versicolor 
  87      6.7      3.1      4.7      1.5 versicolor 
  88      6.3      2.3      4.4      1.3 versicolor 
  89      5.6      3.0      4.1      1.3 versicolor 
  90      5.5      2.5      4.0      1.3 versicolor 
  91      5.5      2.6      4.4      1.2 versicolor 
  92      6.1      3.0      4.6      1.4 versicolor 
  93      5.8      2.6      4.0      1.2 versicolor 
  94      5.0      2.3      3.3      1.0 versicolor 
  95      5.6      2.7      4.2      1.3 versicolor 
  96      5.7      3.0      4.2      1.2 versicolor 
  97      5.7      2.9      4.2      1.3 versicolor 
  98      6.2      2.9      4.3      1.3 versicolor 
  99      5.1      2.5      3.0      1.1 versicolor 
 100      5.7      2.8      4.1      1.3 versicolor 
 101      6.3      3.3      6.0      2.5 virginica 
 102      5.8      2.7      5.1      1.9 virginica 
 103      7.1      3.0      5.9      2.1 virginica 
 104      6.3      2.9      5.6      1.8 virginica 
 105      6.5      3.0      5.8      2.2 virginica 
 106      7.6      3.0      6.6      2.1 virginica 
 107      4.9      2.5      4.5      1.7 virginica 
 108      7.3      2.9      6.3      1.8 virginica 
 109      6.7      2.5      5.8      1.8 virginica 
 110      7.2      3.6      6.1      2.5 virginica 
 111      6.5      3.2      5.1      2.0 virginica 
 112      6.4      2.7      5.3      1.9 virginica 
 113      6.8      3.0      5.5      2.1 virginica 
 114      5.7      2.5      5.0      2.0 virginica 
 115      5.8      2.8      5.1      2.4 virginica 
 116      6.4      3.2      5.3      2.3 virginica 
 117      6.5      3.0      5.5      1.8 virginica 
 118      7.7      3.8      6.7      2.2 virginica 
 119      7.7      2.6      6.9      2.3 virginica 
 120      6.0      2.2      5.0      1.5 virginica 
 121      6.9      3.2      5.7      2.3 virginica 
 122      5.6      2.8      4.9      2.0 virginica 
 123      7.7      2.8      6.7      2.0 virginica 
 124      6.3      2.7      4.9      1.8 virginica 
 125      6.7      3.3      5.7      2.1 virginica 
 126      7.2      3.2      6.0      1.8 virginica 
 127      6.2      2.8      4.8      1.8 virginica 
 128      6.1      3.0      4.9      1.8 virginica 
 129      6.4      2.8      5.6      2.1 virginica 
 130      7.2      3.0      5.8      1.6 virginica 
 131      7.4      2.8      6.1      1.9 virginica 
 132      7.9      3.8      6.4      2.0 virginica 
 133      6.4      2.8      5.6      2.2 virginica 
 134      6.3      2.8      5.1      1.5 virginica 
 135      6.1      2.6      5.6      1.4 virginica 
 136      7.7      3.0      6.1      2.3 virginica 
 137      6.3      3.4      5.6      2.4 virginica 
 138      6.4      3.1      5.5      1.8 virginica 
 139      6.0      3.0      4.8      1.8 virginica 
 140      6.9      3.1      5.4      2.1 virginica 
 141      6.7      3.1      5.6      2.4 virginica 
 142      6.9      3.1      5.1      2.3 virginica 
 143      5.8      2.7      5.1      1.9 virginica 
 144      6.8      3.2      5.9      2.3 virginica 
 145      6.7      3.3      5.7      2.5 virginica 
 146      6.7      3.0      5.2      2.3 virginica 
 147      6.3      2.5      5.0      1.9 virginica 
 148      6.5      3.0      5.2      2.0 virginica 
 149      6.2      3.4      5.4      2.3 virginica 
 150      5.9      3.0      5.1      1.8 virginica
ตัวอย่าง PCA biplot โดยใช้ชุดข้อมูล iris ใน R (รหัสด้านล่าง):

รูปนี้แสดงให้เห็นว่าความยาวของกลีบดอกไม้และความกว้างของกลีบดอกไม้มีความสำคัญในการกำหนดคะแนน PC1 และในการแยกแยะระหว่างกลุ่มสายพันธุ์ setosa มีกลีบดอกขนาดเล็กและกลีบเลี้ยงกว้าง
เห็นได้ชัดว่าข้อสรุปที่คล้ายกันสามารถดึงออกมาจากการวางแผนผลการวิเคราะห์เชิงเส้นแยกประเภทแม้ว่าฉันไม่แน่ใจว่าพล็อต LDA แสดงถึงอะไรดังนั้นคำถาม แกนคือ discriminants เชิงเส้นสองอันแรก (LD1 99% และ LD2 1% ของการติดตาม) พิกัดของเวกเตอร์สีแดงคือ "สัมประสิทธิ์ของการจำแนกเชิงเส้น" ยังอธิบายว่า "การขยาย" (lda.fit $ การปรับขนาด: เมทริกซ์ที่แปลงการสังเกตการทำงานของพินิจพิเคราะห์เป็นมาตรฐานเพื่อให้ภายในกลุ่มความแปรปรวนเมทริกซ์ "ปรับ" จะถูกคำนวณเป็นและdiag(1/f1, , p) f1 is sqrt(diag(var(x - group.means[g, ])))ข้อมูลสามารถถูกฉายลงบน discriminants เชิงเส้น (โดยใช้ guess.lda) (รหัสด้านล่างดังที่แสดงhttps://stackoverflow.com/a/17240647/742447) ข้อมูลและตัวแปรตัวทำนายถูกพล็อตเข้าด้วยกันเพื่อให้สปีชีส์ถูกกำหนดโดยการเพิ่มขึ้นของตัวแปรตัวทำนายที่สามารถเห็นได้ (เช่นเดียวกับ PCA biplots ปกติและ PCA biplot ด้านบน):

จากพล็อตนี้ความกว้างของ Sepal ความกว้างของ Petal และ Petal Length ล้วนมีส่วนทำให้ระดับ LD1 ใกล้เคียงกัน อย่างที่คาดหวัง setosa ดูเหมือนกลีบดอกที่เล็กกว่าและกลีบเลี้ยงกว้าง
ไม่มีวิธีในการพล็อต biplots ดังกล่าวจาก LDA ใน R และการสนทนาบางส่วนของออนไลน์นี้ซึ่งทำให้ฉันระวังวิธีนี้
พล็อต LDA นี้ (ดูรหัสด้านล่าง) ให้การตีความที่ถูกต้องทางสถิติของคะแนนการปรับขนาดตัวแปรทำนายหรือไม่?
รหัสสำหรับ PCA:
require(grid)
  iris.pca <- prcomp(iris[,-5])
  PC <- iris.pca
  x="PC1"
  y="PC2"
  PCdata <- data.frame(obsnames=iris[,5], PC$x)
  datapc <- data.frame(varnames=rownames(PC$rotation), PC$rotation)
  mult <- min(
    (max(PCdata[,y]) - min(PCdata[,y])/(max(datapc[,y])-min(datapc[,y]))),
    (max(PCdata[,x]) - min(PCdata[,x])/(max(datapc[,x])-min(datapc[,x])))
  )
  datapc <- transform(datapc,
                      v1 = 1.6 * mult * (get(x)),
                      v2 = 1.6 * mult * (get(y))
  )
  datapc$length <- with(datapc, sqrt(v1^2+v2^2))
  datapc <- datapc[order(-datapc$length),]
  p <- qplot(data=data.frame(iris.pca$x),
             main="PCA",
             x=PC1,
             y=PC2,
             shape=iris$Species)
  #p <- p + stat_ellipse(aes(group=iris$Species))
  p <- p + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
  p <- p + geom_text(data=datapc, 
                     aes(x=v1, y=v2,
                         label=varnames,
                         shape=NULL,
                         linetype=NULL,
                         alpha=length), 
                     size = 3, vjust=0.5,
                     hjust=0, color="red")
  p <- p + geom_segment(data=datapc, 
                        aes(x=0, y=0, xend=v1,
                            yend=v2, shape=NULL, 
                            linetype=NULL,
                            alpha=length),
                        arrow=arrow(length=unit(0.2,"cm")),
                        alpha=0.5, color="red")
  p <- p + coord_flip()
  print(p)
รหัสสำหรับ LDA
#Perform LDA analysis
iris.lda <- lda(as.factor(Species)~.,
                 data=iris)
#Project data on linear discriminants
iris.lda.values <- predict(iris.lda, iris[,-5])
#Extract scaling for each predictor and
data.lda <- data.frame(varnames=rownames(coef(iris.lda)), coef(iris.lda))
#coef(iris.lda) is equivalent to iris.lda$scaling
data.lda$length <- with(data.lda, sqrt(LD1^2+LD2^2))
scale.para <- 0.75
#Plot the results
p <- qplot(data=data.frame(iris.lda.values$x),
           main="LDA",
           x=LD1,
           y=LD2,
           shape=iris$Species)#+stat_ellipse()
p <- p + geom_hline(aes(0), size=.2) + geom_vline(aes(0), size=.2)
p <- p + theme(legend.position="none")
p <- p + geom_text(data=data.lda,
                   aes(x=LD1*scale.para, y=LD2*scale.para,
                       label=varnames, 
                       shape=NULL, linetype=NULL,
                       alpha=length),
                   size = 3, vjust=0.5,
                   hjust=0, color="red")
p <- p + geom_segment(data=data.lda,
                      aes(x=0, y=0,
                          xend=LD1*scale.para, yend=LD2*scale.para,
                          shape=NULL, linetype=NULL,
                          alpha=length),
                      arrow=arrow(length=unit(0.2,"cm")),
                      color="red")
p <- p + coord_flip()
print(p)
ผลลัพธ์ของ LDA มีดังนี้
lda(as.factor(Species) ~ ., data = iris)
Prior probabilities of groups:
    setosa versicolor  virginica 
 0.3333333  0.3333333  0.3333333 
Group means:
           Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa            5.006       3.428        1.462       0.246
versicolor        5.936       2.770        4.260       1.326
virginica         6.588       2.974        5.552       2.026
Coefficients of linear discriminants:
                    LD1         LD2
Sepal.Length  0.8293776  0.02410215
Sepal.Width   1.5344731  2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width  -2.8104603  2.83918785
Proportion of trace:
   LD1    LD2 
0.9912 0.0088
          predictor variable scaling scoresผมก็ยังไม่ทราบว่าเป็น อาจจะ "คะแนนแบ่งแยก"? อย่างไรก็ตามฉันได้เพิ่มคำตอบที่คุณอาจสนใจ
                

discriminant predictor variable scaling scoresอะไร - คำที่ดูเหมือนจะไม่ธรรมดาและแปลก