ถ้าการกระจายตัวของสถิติทดสอบเป็น bimodal, p-value จะมีความหมายอะไรไหม?
P-value ถูกกำหนดความน่าจะเป็นที่จะได้รับสถิติการทดสอบอย่างน้อยที่สุดเท่าที่จะสังเกตได้โดยสมมติว่าสมมติฐานว่างเป็นจริง ในคำอื่น ๆ P( X≥ t | H0)P(X≥t|H0)P( X \ge t | H_0 ) แต่จะเป็นอย่างไรถ้าสถิติการทดสอบนั้นมีค่า bimodal ในการแจกแจง? p-value มีความหมายอะไรในบริบทนี้หรือไม่? ตัวอย่างเช่นฉันจะจำลองข้อมูล bimodal ใน R: set.seed(0) # Generate bi-modal distribution bimodal <- c(rnorm(n=100,mean=25,sd=3),rnorm(n=100,mean=100,sd=5)) hist(bimodal, breaks=100) และสมมติว่าเราสังเกตค่าสถิติทดสอบ 60 และที่นี่เรารู้จากภาพค่านี้ไม่น่ามาก ดังนั้นฉันต้องการให้ขั้นตอนสถิติที่ฉันใช้ (พูด p-value) เปิดเผยสิ่งนี้ แต่ถ้าเราคำนวณค่า p ตามที่กำหนดเราจะได้ค่าสูงมาก observed <- 60 # Get P-value …