คำถามติดแท็ก differential-privacy

4
วารสารวิทยาศาสตร์ให้การรับรองเส้นทางการ์เด้นออฟฟอร์คกิ้งหรือไม่?
แนวคิดของการวิเคราะห์ข้อมูลแบบปรับตัวคือคุณปรับเปลี่ยนแผนสำหรับการวิเคราะห์ข้อมูลในขณะที่คุณเรียนรู้เพิ่มเติมเกี่ยวกับมัน ในกรณีของการวิเคราะห์ข้อมูลเชิงสำรวจ (EDA) โดยทั่วไปเป็นความคิดที่ดี (คุณมักจะมองหารูปแบบที่ไม่คาดฝันในข้อมูล) แต่สำหรับการศึกษาเชิงยืนยันสิ่งนี้ได้รับการยอมรับอย่างกว้างขวางว่าเป็นวิธีการวิเคราะห์ที่มีข้อบกพร่องมาก ขั้นตอนมีการกำหนดไว้อย่างชัดเจนและวางแผนอย่างเหมาะสมในขั้นสูง) ดังที่ได้กล่าวไปแล้วการวิเคราะห์ข้อมูลที่ปรับตัวได้นั้นโดยทั่วไปแล้วมีนักวิจัยจำนวนเท่าใดที่ทำการวิเคราะห์จริง ๆ เช่นนี้หากใครสามารถทำได้ในลักษณะที่ถูกต้องทางสถิติมันจะปฏิวัติการปฏิบัติทางสถิติ บทความวิทยาศาสตร์ต่อไปนี้อ้างว่าได้พบวิธีในการทำเช่นนั้น (ฉันขอโทษสำหรับ paywall แต่ถ้าคุณอยู่ในมหาวิทยาลัยคุณน่าจะเข้าถึงได้): Dwork et al, 2015, holdout ที่นำมาใช้ใหม่ได้: รักษาความถูกต้องในการวิเคราะห์ข้อมูลแบบปรับตัว . โดยส่วนตัวฉันมักสงสัยเกี่ยวกับบทความสถิติที่ตีพิมพ์ในวิทยาศาสตร์และบทความนี้ก็ไม่ต่างกัน ในความเป็นจริงหลังจากอ่านบทความสองครั้งรวมถึงเนื้อหาเพิ่มเติมฉันไม่เข้าใจ (เลย) ทำไมผู้เขียนอ้างว่าวิธีการของพวกเขาป้องกันไม่ให้เกินความเหมาะสม ความเข้าใจของฉันคือพวกเขามีชุดข้อมูลแบบโฮลด์ซึ่งพวกเขาจะใช้ซ้ำ พวกเขาดูเหมือนจะเรียกร้องโดย "fuzzing" ผลลัพธ์ของการวิเคราะห์ยืนยันในชุดข้อมูลที่ไม่ยอมอ่อนข้อกว่ากระชับจะได้รับการป้องกัน (มันเป็นที่น่าสังเกตว่า fuzzing น่าจะเป็นเพียงการเพิ่มเสียงถ้าสถิติการคำนวณเกี่ยวกับข้อมูลการฝึกอบรมคือพอไกล จากสถิติที่คำนวณได้ในข้อมูลโฮลด์ ) เท่าที่ฉันสามารถบอกได้ว่าไม่มีเหตุผลจริงที่จะป้องกันไม่ให้มีความเหมาะสมมากเกินไป ฉันเข้าใจผิดในสิ่งที่ผู้เขียนเสนอหรือไม่? มีลักษณะพิเศษบางอย่างที่ฉันมองเห็นหรือไม่? หรือวิทยาศาสตร์ ได้รับรองการฝึกฝนทางสถิติที่เลวร้ายที่สุดจนถึงปัจจุบันหรือไม่?

2
“ เสียง Laplace” มีความหมายว่าอะไร?
ฉันกำลังเขียนอัลกอริทึมสำหรับความเป็นส่วนตัวที่ต่างกันโดยใช้กลไก Laplace น่าเสียดายที่ฉันไม่มีพื้นฐานด้านสถิติดังนั้นจึงไม่เป็นที่รู้จักกันมากนัก ดังนั้นตอนนี้ฉันสะดุดมากกว่าคำว่า: เสียง Laplace หากต้องการสร้างชุดข้อมูลส่วนบุคคลให้เป็นเอกสารทั้งหมดเพียงแค่พูดถึงการเพิ่มเสียง Laplace ตามการกระจาย Laplace ให้กับค่าฟังก์ชัน k ( X) = f( X) + Y( X)k(X)=ฉ(X)+Y(X)k(X) = f(X) + Y(X) (k คือค่าส่วนต่างที่แตกต่างกัน f คือค่าที่ส่งคืนโดยฟังก์ชั่นการประเมินและ Y the Laplace noise นี่หมายความว่าฉันสร้างตัวแปรสุ่มจากการแจกแจง Laplace ตามฟังก์ชั่นนี้ที่ฉันได้รับจาก wikipedia https://en.wikipedia.org/wiki/Laplace_distribution ? Y= μ - b sgn ( U ) ln( 1 - 2 …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.