1
จะตรวจสอบข้ามกับ cv.glmnet (LASSO regression ใน R) ได้อย่างไร?
ฉันสงสัยว่าจะเข้าใกล้การฝึกอบรมและทดสอบแบบจำลอง LASSO โดยใช้ glmnet ใน R ได้อย่างไร โดยเฉพาะฉันสงสัยว่าจะทำอย่างไรหากขาดชุดข้อมูลการทดสอบภายนอกทำให้ฉันต้องใช้การตรวจสอบข้าม (หรือวิธีการอื่นที่คล้ายคลึงกัน) เพื่อทดสอบแบบจำลอง LASSO ของฉัน ให้ฉันทำลายสถานการณ์ของฉัน: ฉันมีชุดข้อมูลเพียงชุดเดียวเพื่อแจ้งและฝึกอบรมโมเดล glmnet ของฉัน ดังนั้นฉันจะต้องใช้การตรวจสอบข้ามเพื่อแยกข้อมูลของฉันเพื่อสร้างวิธีทดสอบโมเดลของฉัน ฉันกำลังใช้อยู่cv.glmnetซึ่งตามรายละเอียดแพ็คเกจ : ทำการตรวจสอบความถูกต้องข้ามของ k-fold สำหรับ glmnet, สร้างพล็อตและส่งกลับค่าสำหรับแลมบ์ดา การตรวจสอบข้ามถูกดำเนินการในcv.glmnetการเลือกแลมบ์ดาที่ดีที่สุดหรือเป็นวิธีการตรวจสอบข้ามโดยทั่วไปหรือไม่ กล่าวอีกนัยหนึ่งฉันยังต้องทำอีกขั้นตอนการตรวจสอบข้ามเพื่อ "ทดสอบ" โมเดลของฉันหรือไม่ ฉันทำงานกับข้อสันนิษฐานที่ว่า "ใช่แล้ว" ในกรณีนี้ฉันจะตรวจสอบcv.glmnetรุ่นของฉันได้อย่างไร ฉันต้องทำด้วยตนเองหรืออาจเป็นcaretฟังก์ชั่นที่มีประโยชน์สำหรับรุ่น glmnet หรือไม่? ฉันจะใช้ "ลูป" สองจุดศูนย์กลางของการตรวจสอบความถูกต้องไขว้หรือไม่ ... ฉันใช้ "ลูปด้านใน" ของ CV ผ่านcv.glmnetเพื่อกำหนดค่าแลมบ์ดาที่ดีที่สุดในแต่ละkเท่าของ "ลูปภายนอก" ของการประมวลผลการตรวจสอบความถูกต้องข้าม ? หากฉันทำการตรวจสอบความถูกต้องของcv.glmnetรูปแบบการตรวจสอบความถูกต้องไขว้ฉันจะแยกโมเดล "ดีที่สุด" (จากแลมบ์ดา "ที่ดีที่สุด") …