คำถามติดแท็ก loss-functions

ฟังก์ชั่นที่ใช้ในการหาปริมาณความแตกต่างระหว่างข้อมูลที่สังเกตได้กับค่าที่ทำนายไว้ การย่อขนาดฟังก์ชั่นการสูญเสียเป็นวิธีการประมาณค่าพารามิเตอร์ของแบบจำลอง

1
“ การสูญเสียบันทึก” หมายถึงการสูญเสียลอการิทึมหรือการสูญเสียโลจิสติกส์หรือไม่?
ฉันรู้ว่าฉันเห็นมันทั้งสองวิธีดังนั้นจึงมีความแตกต่างระหว่างทั้งสองและที่หนึ่งที่ถูกเรียกโดยทั่วไปมากกว่า?

2
การเปรียบเทียบระหว่างตัวประมาณ Bayes
พิจารณาการสูญเสียกำลังสองด้วยก่อนรับที่2) ปล่อยให้ โอกาส ค้นหาประมาณเบส์\L(θ,δ)=(θ−δ)2L(θ,δ)=(θ−δ)2L(\theta,\delta)=(\theta-\delta)^2π(θ)π(θ)\pi(\theta)π(θ)∼U(0,1/2)π(θ)∼U(0,1/2)\pi(\theta)\sim U(0,1/2)f(x|θ)=θxθ−1I[0,1](x),θ>0f(x|θ)=θxθ−1I[0,1](x),θ>0f(x|\theta)=\theta x^{\theta-1}\mathbb{I}_{[0,1]}(x), \theta>0δπδπ\delta^\pi พิจารณาการสูญเสียกำลังสองน้ำหนัก โดยที่ กับก่อน theta) ปล่อยให้เป็นโอกาส ค้นหาประมาณเบส์\Lw(θ,δ)=w(θ)(θ−δ)2Lw(θ,δ)=w(θ)(θ−δ)2L_w(\theta,\delta)=w(\theta)(\theta-\delta)^2w(θ)=I(−∞,1/2)w(θ)=I(−∞,1/2)w(\theta)=\mathbb{I}_{(-\infty,1/2)}π1(θ)=I[0,1](θ)π1(θ)=I[0,1](θ)\pi_1(\theta)=\mathbb{I}_{[0,1]}(\theta)f(x|θ)=θxθ−1I[0,1](x),θ>0f(x|θ)=θxθ−1I[0,1](x),θ>0f(x|\theta)=\theta x^{\theta-1}\mathbb{I}_{[0,1]}(x), \theta>0δπ1δ1π\delta^\pi_1 เปรียบเทียบและδπδπ\delta^\piδπ1δ1π\delta^\pi_1 ครั้งแรกที่ฉันสังเกตเห็นว่าและฉันคิดว่านั่นเป็นโอกาสที่มิฉะนั้นฉันจะไม่ได้รับหลังแล้ว ดังนั้นตัวประมาณค่า Bayes ที่เกี่ยวกับการสูญเสียกำลังสองคือ f(x|θ)∼Beta(θ,1)f(x|θ)∼Beta(θ,1)f(x|\theta)\sim Beta(\theta,1)π(θ|x)∝f(x|θ)π(θ)=θxθ−1I[0,1]∗2I(0,1/2)(θ)∼Beta(θ,1)π(θ|x)∝f(x|θ)π(θ)=θxθ−1I[0,1]∗2I(0,1/2)(θ)∼Beta(θ,1)\pi(\theta|x)\propto f(x|\theta)\pi(\theta)=\theta x^{\theta-1}\mathbb{I}_{[0,1]}*2\mathbb{I}_{(0,1/2)}(\theta)\sim Beta(\theta,1)E[π(θ|x)]=θθ+1E[π(θ|x)]=θθ+1\mathbb{E}[\pi(\theta|x)]=\frac{\theta}{\theta+1} ฉันกำลังดูในหนังสือThe Bayesian Choiceและมีทฤษฎีบทเกี่ยวกับตัวประมาณค่า Bayes ที่เกี่ยวข้องกับการสูญเสียกำลังสองและมันถูกกำหนดโดย δπ(x)=Eπ[w(θ)θ|x]Eπ[w(θ)|x]δπ(x)=Eπ[w(θ)θ|x]Eπ[w(θ)|x]\delta^\pi(x)=\frac{\mathbb{E}^\pi[w(\theta)\theta|x]}{\mathbb{E}^\pi[w(\theta)|x]} บางคนสามารถอธิบายให้ฉันคำนวณได้อย่างไร สิ่งที่ฉันพยายามคือ: δπ(x)=∫θw(θ)f(x|θ)π(θ)dθ∫w(θ)f(x|θ)π(θ)dθ∫f(x|θ)π(θ)dθ∫w(θ)f(xθ)π(θ)dθδπ(x)=∫θw(θ)f(x|θ)π(θ)dθ∫w(θ)f(x|θ)π(θ)dθ∫f(x|θ)π(θ)dθ∫w(θ)f(xθ)π(θ)dθ\delta^\pi(x)=\frac{\frac{\int \theta w(\theta)f(x|\theta)\pi(\theta)d\theta}{\int w(\theta)f(x|\theta)\pi(\theta)d\theta}}{\frac{\int f(x|\theta)\pi(\theta)d\theta}{\int w(\theta)f(x\theta)\pi(\theta)d\theta}} ฉันรู้ว่าการสนับสนุนคือแต่เมื่อฉันพยายามรวมเข้ากับตัวเศษ[0,12][0,12][0,\frac{1}{2}] ∫θw(θ)f(x|θ)π(θ)dθ=∫120θθxθ−1dθ=1x∫120θ2xθdθ∫θw(θ)f(x|θ)π(θ)dθ=∫012θθxθ−1dθ=1x∫012θ2xθdθ\int \theta w(\theta)f(x|\theta)\pi(\theta)d\theta=\int_0^\frac{1}{2}\theta\theta x^{\theta-1}d\theta=\frac{1}{x}\int_0^\frac{1}{2}\theta^2 x^\theta d\theta ฉันไม่ได้ผลลัพธ์ที่ดี

1
อะไรจะเป็นตัวอย่างของเมื่อ L2 เป็นฟังก์ชั่นการสูญเสียที่ดีสำหรับการคำนวณการสูญเสียหลัง?
การสูญเสีย L2 พร้อมกับการสูญเสีย L0 และ L1 เป็นฟังก์ชั่นการสูญเสีย "เริ่มต้น" ที่ใช้กันโดยทั่วไปสามฟังก์ชั่นเมื่อใช้การสรุปหลังโดยการสูญเสียหลังขั้นต่ำที่คาดไว้ เหตุผลหนึ่งสำหรับเรื่องนี้อาจเป็นเพราะพวกเขาค่อนข้างง่ายต่อการคำนวณ (อย่างน้อยสำหรับการแจกแจงแบบ 1d), L0 ให้ผลลัพธ์ในโหมด, L1 ในค่ามัธยฐานและ L2 ให้ค่าเฉลี่ย เมื่อสอนฉันสามารถสร้างสถานการณ์ที่ L0 และ L1 เป็นฟังก์ชั่นการสูญเสียที่สมเหตุสมผล (ไม่ใช่แค่ "ค่าเริ่มต้น") แต่ฉันกำลังดิ้นรนกับสถานการณ์ที่ L2 จะเป็นฟังก์ชันการสูญเสียที่สมเหตุสมผล ดังนั้นคำถามของฉัน: เพื่อจุดประสงค์ในการสอนสิ่งที่จะเป็นตัวอย่างของเมื่อ L2 เป็นฟังก์ชั่นการสูญเสียที่ดีสำหรับการคำนวณการสูญเสียหลังขั้นต่ำ? สำหรับ L0 มันง่ายที่จะเกิดขึ้นกับสถานการณ์จากการเดิมพัน สมมติว่าคุณได้คำนวณส่วนหลังของจำนวนประตูทั้งหมดในเกมฟุตบอลที่กำลังจะมาถึงและคุณจะทำการเดิมพันที่คุณชนะ $$$ หากคุณเดาจำนวนประตูอย่างแม่นยำและแพ้อย่างอื่น จากนั้น L0 คือฟังก์ชันการสูญเสียที่สมเหตุสมผล ตัวอย่าง L1 ของฉันมีการวางแผนเล็กน้อย คุณกำลังพบเพื่อนที่จะมาถึงหนึ่งในสนามบินหลายแห่งและจากนั้นเดินทางโดยรถยนต์ปัญหาคือคุณไม่รู้ว่าสนามบินใด (และไม่สามารถโทรหาเพื่อนของคุณได้เพราะเธออยู่ในอากาศ) เมื่อพิจารณาถึงสนามบินที่เธออาจจะลงจอดแล้วเป็นสถานที่ที่ดีที่จะวางตำแหน่งตัวเองเพื่อให้ระยะห่างระหว่างเธอกับคุณจะน้อยเมื่อเธอไปถึง ที่นี่จุดที่ลดการสูญเสีย L1 ที่คาดไว้ให้น้อยที่สุดนั้นสมเหตุสมผลถ้าทำการสันนิษฐานอย่างง่าย …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.