คำถามติดแท็ก quasi-likelihood

2
การกระจายแบบกึ่งทวินามคืออะไร (ในบริบทของ GLM)
ฉันหวังว่าบางคนสามารถให้ภาพรวมที่เข้าใจง่ายเกี่ยวกับการกระจายตัวของ quasibinomial คืออะไรและมันทำอะไร ฉันสนใจในประเด็นเหล่านี้เป็นพิเศษ: วิธี quasibinomial แตกต่างกับการกระจายทวินาม เมื่อตัวแปรตอบสนองเป็นสัดส่วน (ค่าตัวอย่าง ได้แก่ 0.23, 0.11, 0.78, 0.98) โมเดล quasibinomial จะทำงานใน R แต่โมเดลทวินามจะไม่ ทำไมรูปแบบ quasibinomial ควรใช้เมื่อตัวแปรการตอบสนอง TRUE / FALSE เกินกำหนด

1
ทำไม quasi-Poisson ใน GLM จึงไม่ถือว่าเป็นกรณีพิเศษของทวินามลบ
ฉันกำลังพยายามจัดวางโมเดลเชิงเส้นแบบทั่วไปกับชุดข้อมูลนับจำนวนหนึ่งที่อาจหรือไม่อาจใช้เกินขนาด การแจกแจงแบบบัญญัติทั้งสองที่ใช้ในที่นี้คือ Poisson และ Negative Binomial (Negbin) พร้อม EVและความแปรปรวนμμ\mu VRP= μVarP=μVar_P = \mu VRยังไม่มีข้อความB= μ + μ2θVarNB=μ+μ2θVar_{NB} = \mu + \frac{\mu^2}{\theta} ซึ่งสามารถติดตั้งในการใช้ R glm(..,family=poisson)และglm.nb(...)ตามลำดับ นอกจากนี้ยังมีquasipoissonครอบครัวซึ่งในความเข้าใจของฉันเป็นปัวซองปรับด้วย EV และความแปรปรวนเดียวกัน VRคิวพี= ϕ μVarQP=ϕμVar_{QP} = \phi\mu , เช่นตกบางแห่งระหว่าง Poisson และ Negbin ปัญหาหลักของครอบครัว quasipoisson คือไม่มีความเกี่ยวข้องกันดังนั้นจึงมีการทดสอบทางสถิติที่มีประโยชน์อย่างมากและใช้มาตรการที่เหมาะสม (AIC, LR etcetera) ถ้าคุณเปรียบเทียบ QP และ Negbin แปรปรวนคุณอาจสังเกตเห็นว่าคุณสามารถถือเอาพวกเขาโดยการวางtheta} ดำเนินการต่อในตรรกะนี้คุณสามารถลองแสดงการแจกแจง quasipoisson …

3
แนวคิดและสัญชาตญาณที่อยู่เบื้องหลังการประมาณค่าความน่าจะเป็นสูงสุด (QMLE)
คำถาม (s):อะไรคือความคิดและสัญชาตญาณที่อยู่เบื้องหลังการประมาณความเป็นไปได้สูงสุดเสมือน (QMLE; หรือที่เรียกว่าการประมาณความน่าจะเป็นหลอกหลอกแบบ PMLE) อะไรทำให้ตัวประมาณทำงานได้เมื่อการแจกแจงข้อผิดพลาดจริงไม่ตรงกับการแจกแจงผิดพลาด เว็บไซต์วิกิพีเดียสำหรับ QMLE ดี (สั้น ๆ ที่ใช้งานง่ายเพื่อจุด) แต่ฉันสามารถใช้บางปรีชาเพิ่มเติมและรายละเอียดอาจจะยังมีภาพประกอบ การอ้างอิงอื่น ๆ ยินดีต้อนรับมากที่สุด (ฉันจำได้ว่ามีหนังสือตำราเศรษฐศาสตร์จำนวนน้อยที่กำลังมองหาเนื้อหาเกี่ยวกับ QMLE และทำให้ฉันประหลาดใจ QMLE ถูกครอบคลุมเพียงหนึ่งหรือสองเล่มเช่น Wooldridge "การวิเคราะห์ทางเศรษฐมิติของข้อมูลส่วนและข้อมูลพาเนล" (2010) บทที่ 13 ส่วนที่ 11, หน้า 502-517)

2
ปัวซองหรือปัวซองกึ่งในการถดถอยด้วยการนับข้อมูลและการกระจายเกินพิกัด?
ฉันมีข้อมูลนับจำนวน (การวิเคราะห์อุปสงค์ / ข้อเสนอพร้อมจำนวนการนับลูกค้าขึ้นอยู่กับปัจจัยหลายอย่าง) ฉันลองการถดถอยเชิงเส้นโดยมีข้อผิดพลาดปกติ แต่ QQ-plot ของฉันไม่ค่อยดี ฉันพยายามบันทึกการเปลี่ยนแปลงของคำตอบ: อีกครั้งแผนการดี QQ ดังนั้นตอนนี้ฉันกำลังลองถดถอยด้วยข้อผิดพลาดปัวซอง ด้วยโมเดลที่มีตัวแปรสำคัญทั้งหมดฉันจะได้รับ: Null deviance: 12593.2 on 53 degrees of freedom Residual deviance: 1161.3 on 37 degrees of freedom AIC: 1573.7 Number of Fisher Scoring iterations: 5 การเบี่ยงเบนส่วนที่เหลือมีขนาดใหญ่กว่าองศาอิสระที่เหลืออยู่ฉันมีการกระจายเกินกำหนด ฉันจะรู้ได้อย่างไรว่าฉันต้องใช้ quasipoisson? เป้าหมายของ quasipoisson ในกรณีนี้คืออะไร? ฉันอ่านคำแนะนำนี้ใน "The R Book" โดย Crawley แต่ฉันไม่เห็นประเด็นหรือการปรับปรุงขนาดใหญ่ในกรณีของฉัน

2
การทดสอบการกระจายตัวใน GLMs * มีประโยชน์ * จริงหรือไม่
ปรากฏการณ์ของ 'การกระจายตัวมากเกินไป' ใน GLM เกิดขึ้นเมื่อใดก็ตามที่เราใช้แบบจำลองที่จำกัดความแปรปรวนของตัวแปรการตอบสนองและข้อมูลจะแสดงความแปรปรวนมากกว่าแบบ จำกัด ที่อนุญาต สิ่งนี้มักเกิดขึ้นเมื่อการสร้างแบบจำลองนับข้อมูลโดยใช้ Poisson GLM และสามารถวินิจฉัยได้จากการทดสอบที่รู้จักกันดี หากการทดสอบแสดงให้เห็นว่ามีหลักฐานนัยสำคัญทางสถิติของการกระจายตัวเกินเรามักจะสรุปโมเดลโดยใช้ตระกูลการแจกแจงที่กว้างขึ้นที่ทำให้พารามิเตอร์ความแปรปรวนจากข้อ จำกัด ที่เกิดขึ้นภายใต้โมเดลดั้งเดิม ในกรณีของ Poisson GLM มันเป็นเรื่องธรรมดาที่จะพูดคุยทั่วไปทั้งในเชิงลบ - ทวินามหรือกึ่ง - Poisson GLM สถานการณ์นี้กำลังตั้งท้องพร้อมกับคัดค้านอย่างชัดเจน ทำไมเริ่มต้นด้วย Poisson GLM เลยเหรอ? หนึ่งสามารถเริ่มต้นโดยตรงกับรูปแบบการกระจายที่กว้างขึ้นซึ่งมีพารามิเตอร์แปรปรวนอิสระ (ค่อนข้าง) และอนุญาตให้พารามิเตอร์แปรปรวนจะพอดีกับข้อมูลละเว้นการทดสอบการกระจายตัวเกินอย่างสมบูรณ์ ในสถานการณ์อื่น ๆ เมื่อเราทำการวิเคราะห์ข้อมูลเรามักจะใช้แบบฟอร์มการกระจายสินค้าที่อนุญาตให้มีอิสระอย่างน้อยสองครั้งแรกดังนั้นทำไมต้องมีข้อยกเว้นที่นี่ คำถามของฉัน:มีเหตุผลที่ดีที่เริ่มต้นด้วยการแจกแจงที่แก้ไขความแปรปรวน (เช่นการแจกแจงปัวซง) แล้วทำการทดสอบการกระจายตัวเกินหรือไม่? ขั้นตอนนี้เปรียบเทียบกับการกระโดดข้ามแบบฝึกหัดนี้ได้อย่างสมบูรณ์และตรงไปยังแบบจำลองทั่วไปที่มากขึ้น (เช่นลบ - ทวินาม, กึ่ง - ปัวซอง ฯลฯ )? กล่าวอีกนัยหนึ่งทำไมไม่ใช้การแจกแจงที่มีพารามิเตอร์ผลต่างอิสระเสมอไป

1
อะไรคือความแตกต่างระหว่างการถดถอยโลจิสติกและการถดถอยการตอบสนองแบบเศษส่วน?
เท่าที่ฉันทราบความแตกต่างระหว่างตัวแบบโลจิสติกและตัวแบบการตอบสนองแบบเศษส่วน (frm) คือตัวแปรตาม (Y) ซึ่ง frm คือ [0,1] แต่โลจิสติกคือ {0, 1} นอกจากนี้ frm ใช้ตัวประมาณค่าความน่าจะเป็นในการกำหนดพารามิเตอร์ โดยปกติเราสามารถใช้เพื่อให้ได้รูปแบบโลจิสติกโดยglmglm(y ~ x1+x2, data = dat, family = binomial(logit)) สำหรับ FRM เราเปลี่ยนไป family = binomial(logit)family = quasibinomial(logit) ฉันสังเกตเห็นว่าเรายังสามารถใช้family = binomial(logit)เพื่อรับพารามิเตอร์ของ frm เพราะมันให้ค่าประมาณเดียวกัน ดูตัวอย่างต่อไปนี้ library(foreign) mydata <- read.dta("k401.dta") glm.bin <- glm(prate ~ mrate + age + sole …

1
จะจัดการกับ overdispersion ในการถดถอยของปัวซองได้อย่างไร: ความเป็นไปได้เสมือน, GLM ทวินามลบ, หรือเอฟเฟกต์แบบสุ่มระดับหัวเรื่อง?
ฉันได้พบกับข้อเสนอสามข้อเพื่อจัดการกับการกระจายเกินพิกัดในตัวแปรตอบกลับของปัวซองและโมเดลเริ่มต้นที่มีเอฟเฟกต์ถาวรทั้งหมด: ใช้แบบจำลองเสมือน; ใช้ GLM ลบแบบทวินาม ใช้โมเดลผสมกับเอฟเฟกต์แบบสุ่มระดับหัวเรื่อง แต่สิ่งที่จะเลือกจริงและทำไม? มีเกณฑ์ใดบ้างในกลุ่มนี้?

1
ค่าสัมประสิทธิ์ที่เหมือนกันประมาณในรูปแบบปัวซอง vs ควอซี - ปัวซอง
ในการสร้างแบบจำลองข้อมูลการนับการเรียกร้องในสภาพแวดล้อมการประกันภัยฉันเริ่มต้นด้วย Poisson แต่แล้วสังเกตเห็นการทับซ้อนกัน Quasi-Poisson เป็นแบบอย่างที่ดีกว่าความสัมพันธ์แปรปรวนที่ดีกว่า Poisson พื้นฐาน แต่ฉันสังเกตเห็นว่าสัมประสิทธิ์เป็นเหมือนกันทั้งใน Poisson และ Quasi-Poisson หากนี่ไม่ใช่ข้อผิดพลาดเหตุใดจึงเป็นเช่นนี้ การใช้ Quasi-Poisson บน Poisson มีประโยชน์อย่างไร สิ่งที่ควรทราบ: การสูญเสียที่อยู่ภายใต้พื้นฐานส่วนเกินซึ่ง (ฉันเชื่อว่า) ป้องกัน Tweedie จากการทำงาน - แต่มันเป็นการกระจายครั้งแรกที่ฉันพยายาม ฉันยังตรวจสอบรุ่นของ NB, ZIP, ZINB และ Hurdle แต่ก็ยังพบว่า Quasi-Poisson นั้นเหมาะสมที่สุด ฉันทดสอบการกระจายตัวเกินขนาดผ่านการทดสอบการกระจายในแพ็คเกจ AER พารามิเตอร์การกระจายของฉันอยู่ที่ประมาณ 8.4 โดยมีค่า p อยู่ที่ขนาด 10 ^ -16 ฉันกำลังใช้ glm () กับ family = …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.