คำถามติดแท็ก vecm

9
ทำไมต้องใช้โมเดลการแก้ไขข้อผิดพลาดเวกเตอร์
ฉันสับสนเกี่ยวกับรูปแบบการแก้ไขข้อผิดพลาดของเวกเตอร์ ( VECM ) พื้นหลังทางเทคนิค: VECMนำเสนอความเป็นไปได้ในการใช้Vector Autoregressive Model ( VAR ) กับอนุกรมเวลาหลายตัวแปรในตัว ในตำราเรียนพวกเขาตั้งชื่อปัญหาบางอย่างในการใช้VARกับอนุกรมเวลาแบบบูรณาการสิ่งสำคัญที่สุดคือการถดถอยแบบเผด็จการ กระบวนการประเมินVECMประกอบด้วยขั้นตอนสามขั้นตอนต่อไปนี้ซึ่งเป็นขั้นตอนที่สับสนสำหรับฉันขั้นตอนแรก: ข้อมูลจำเพาะและการประมาณค่าของโมเดลVARสำหรับอนุกรมเวลาหลายตัวแปรรวม คำนวณการทดสอบอัตราส่วนความน่าจะเป็นเพื่อกำหนดจำนวนความสัมพันธ์ของการมีส่วนร่วม หลังจากกำหนดจำนวน cointegrations ให้ประเมินVECM ในขั้นตอนแรกหนึ่งประมาณการแบบจำลองVAR ที่มีจำนวนของความล่าช้าที่เหมาะสม (ใช้ความดีปกติของเกณฑ์พอดี) และตรวจสอบว่าส่วนที่เหลือสอดคล้องกับสมมติฐานของแบบจำลองหรือไม่นั่นคือการไม่มีความสัมพันธ์แบบอนุกรมและความสัมพันธ์แบบ heteroscedasticity . ดังนั้นหนึ่งการตรวจสอบว่ารูปแบบVARอย่างเหมาะสมอธิบายอนุกรมเวลาหลายตัวแปรและหนึ่งดำเนินการเพื่อขั้นตอนต่อไปถ้ามันเป็นเท่านั้น และตอนนี้สำหรับคำถามของฉัน: ถ้าแบบจำลองVARอธิบายข้อมูลได้ดีทำไมฉันต้องใช้VECMเลย? หากเป้าหมายของฉันคือการสร้างการคาดการณ์มันไม่เพียงพอที่จะประเมินVARและตรวจสอบสมมติฐานและถ้าพวกเขาบรรลุเป้าหมายเพียงใช้โมเดลนี้

1
การหาเวกเตอร์ cointegration โดยใช้วิธี Johansen
ฉันพยายามเข้าใจวิธี Johansen ให้ดีขึ้นดังนั้นฉันจึงพัฒนาตัวอย่าง 3.1 ที่ได้รับจากหนังสือLikelihood-Based-Inference-Cointegrated-Autoregressive-Econometrics ที่เรามีสามกระบวนการ: X1t=∑i=1tϵ1i+ϵ2tX1t=∑i=1tϵ1i+ϵ2tX_{1t} = \sum_{i=1}^t \epsilon_{1i} + \epsilon_{2t} X2t=α∑i=1tϵ1i+ϵ3tX2t=α∑i=1tϵ1i+ϵ3t X_{2t} = \alpha \sum_{i=1}^t \epsilon_{1i} + \epsilon_{3t} X3t=ϵ4tX3t=ϵ4t X_{3t} = \epsilon_{4t} ดังนั้นเวกเตอร์ cointegration ควรเป็น [a, -1, 0] และ [0, 0 1] แต่เมื่อฉันใช้วิธี Johansen ฉันไม่สามารถรับพวกเขาได้ รหัสที่ฉันพยายามทำมีดังต่อไปนี้: import numpy as np import matplotlib.pyplot as plt import pandas as pd …
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.