ปัญหาวันเกิดทั่วไป


12

คืนนี้คู่หมั้นของฉันพาฉันออกไปทานอาหารค่ำเพื่อฉลองวันเกิดของฉัน ในขณะที่เราออกไปข้างนอกฉันได้ยินเสียงสุขสันต์วันเกิดร้องต่อแขก 5 คน (รวมถึงตัวเอง) ในร้านอาหารที่เต็มไปด้วย 50 คน สิ่งนี้ทำให้ฉันสงสัยว่า - ปัญหาวันเกิดฉบับดั้งเดิม (การค้นหาความน่าจะเป็นที่คน 2 คนในห้องNคนเดียวกันมีวันเกิดเดียวกัน) นั้นง่ายและตรงไปตรงมา แต่สิ่งที่เกี่ยวกับการคำนวณความน่าจะเป็นที่อย่างน้อยkผู้คนจากNวันเกิดเดียวกัน

ในกรณีที่คุณสงสัยความน่าจะเป็นอย่างน้อย 5 คนจากทั้งหมด 50 คนที่แบ่งปันวันเกิดเดียวกันคือประมาณ 1/10000

ความท้าทาย

รับจำนวนเต็มสองค่าNและkที่ซึ่งN >= k > 0แสดงความน่าจะเป็นที่อย่างน้อยkผู้คนในกลุ่มNคนที่แบ่งปันวันเกิดเดียวกัน เพื่อให้สิ่งต่าง ๆ ง่ายขึ้นสมมติว่ามีวันเกิดที่เป็นไปได้เสมอ 365 และทุกวันมีโอกาสเท่ากัน

สำหรับk = 2นี้เดือดลงไปปัญหาวันเกิดของเดิมและน่าจะเป็น1 - P(365, N)/(365)**N(ที่P(n,k)เป็นจำนวนพีชคณิต k ยาวที่เกิดขึ้นจากองค์ประกอบ n ) สำหรับค่าที่kมากกว่านี้บทความ WolfWorld MathWorldอาจพิสูจน์ว่ามีประโยชน์

กฎระเบียบ

  • ผลลัพธ์จะต้องถูกกำหนดไว้อย่างถูกต้องและแม่นยำที่สุดสำหรับภาษาที่คุณเลือก ซึ่งหมายความว่าไม่มีการประมาณค่า Monte Carlo หรือการประมาณปัวซอง
  • Nและkจะไม่ใหญ่กว่าจำนวนเต็มที่แทนค่าได้มากที่สุดในภาษาที่คุณเลือก หากภาษาที่คุณเลือกไม่มีจำนวนเต็มสูงสุด (นอกเหนือจากข้อ จำกัด ของหน่วยความจำ) ดังนั้นNและkอาจมีขนาดใหญ่โดยพลการ
  • ข้อผิดพลาดความแม่นยำที่เกิดจากความไม่ถูกต้องของจุดลอยตัวอาจถูกเพิกเฉย - โซลูชันของคุณควรถือว่ามีความแม่นยำและแม่นยำอย่างไม่มีที่สิ้นสุด

กรณีทดสอบ

รูปแบบ: k, N -> exact fraction (float approximation)

2, 4 -> 795341/48627125 (0.016355912466550306)
2, 10 -> 2689423743942044098153/22996713557917153515625 (0.11694817771107766)
2, 23 -> 38093904702297390785243708291056390518886454060947061/75091883268515350125426207425223147563269805908203125 (0.5072972343239854)
3, 3 -> 1/133225 (7.5060987051979735e-06)
3, 15 -> 99202120236895898424238531990273/29796146005797507000413918212890625 (0.0033293607910766013)
3, 23 -> 4770369978858741874704938828021312421544898229270601/375459416342576750627131037126115737816349029541015625 (0.01270542106874784)
3, 88 -> 121972658600365952270507870814168157581992420315979376776734831989281511796047744560525362056937843069780281314799508374037334481686749665057776557164805212647907376598926392555810192414444095707428833039241/238663638085694198987526661236008945231785263891283516149752738222327030518604865144748956653519802030443538582564040039437134064787503711547079611163210009542953054552383296282869196147657930850982666015625 (0.5110651106247305)
4, 5 -> 1821/17748900625 (1.0259790386313012e-07)
4, 25 -> 2485259613640935164402771922618780423376797142403469821/10004116148447957520459906484225353834116619892120361328125 (0.0002484237064787077)
5, 50 -> 786993779912104445948839077141385547220875807924661029087862889286553262259306606691973696493529913926889614561937/7306010813549515310358093277059651246342214174497508156711617142094873581852472030624097938198246993124485015869140625 (0.00010771867165219201)
10, 11 -> 801/8393800448639761033203125 (9.542757239717371e-23)
10, 20 -> 7563066516919731020375145315161/4825745614492126958810682272575693836212158203125 (1.5672327389589693e-18)
10, 100 -> 122483733913713880468912433840827432571103991156207938550769934255186675421169322116627610793923974214844245486313555179552213623490113886544747626665059355613885669915058701717890707367972476863138223808168550175885417452745887418265215709/1018100624231385241853189999481940942382873878399046008966742039665259133127558338726075853312698838815389196105495212915667272376736512436519973194623721779480597820765897548554160854805712082157001360774761962446621765820964355953037738800048828125 (1.2030611807765361e-10)
10, 200 -> 46037609834855282194444796809612644889409465037669687935667461523743071657580101605348193810323944369492022110911489191609021322290505098856358912879677731966113966723477854912238177976801306968267513131490721538703324306724303400725590188016199359187262098021797557231190080930654308244474302621083905460764730976861073112110503993354926967673128790398832479866320227003479651999296010679699346931041199162583292649095888379961533947862695990956213767291953359129132526574405705744727693754517/378333041587022747413582050553902956219347236460887942751654696440740074897712544982385679244606727641966213694207954095750881417642309033313110718881314425431789802709136766451022222829015561216923212248085160525409958950556460005591372098706995468877542448525403291516015085653857006548005361106043070914396018461580475651719152455730181412523297836008507156692430467118523245584181582255037664477857149762078637248959905010608686740872875726844702607085395469621591502118462813086807727813720703125 (1.21685406174776e-07)

9
สุขสันต์วันเกิด (ล่าช้า)!
Luis Mendo

อาจเพิ่มกรณีทดสอบสองสามรายการสำหรับตัวเลขขนาดเล็กหรือไม่
Luis Mendo

@LuisMendo ฉันจะเพิ่มบางอย่างมากขึ้นหลังจากที่ฉันได้รับไม่กี่ชั่วโมงของการนอนหลับ :)
ชำเลืองไปที่

6
เป็นที่น่าสังเกตว่าความน่าจะเป็นที่ผู้คนรับประทานอาหารในร้านอาหารอาจไม่เป็นอิสระไม่ว่าจะเป็นวันเกิดของพวกเขาหรือไม่ดังนั้นความน่าจะเป็นที่วันเกิดห้าจาก 50 คนน่าจะสูงกว่าตรรกะวันเกิด
เกลน O

@GlenO จุดดี!
Luis Mendo

คำตอบ:


3

เยลลี่ , 17 16 ไบต์

ĠZL
365ṗÇ€<¬µS÷L

ไม่มีประสิทธิภาพมาก ลองออนไลน์! (แต่ให้Nต่ำกว่า3 )

มันทำงานอย่างไร

365ṗÇ€<¬µS÷L  Main link. Left argument: N. Right argument: K

365ṗ          Cartesian product; generate all lists of length N that consist of
              elements of [1, ..., 365].
    ǀ        Map the helper link over all generated lists. It returns the highest
              amount of people that share a single birthday.
      <       Compare each result with K.
       ¬      Negate.
        µS÷L  Take the mean by dividing the sum by the length.


ĠZL           Helper link. Argument: A (list of integers)

Ġ             Group the indices have identical values in A.
 Z            Zip; transpose rows with columns.
  L           Take the length of the result, thus counting columns.

1
"คง N ต่ำกว่า 3" ... ไม่เข้มงวดเกินไปใช่ไหม
Neil

2
@Neil โซลูชันนี้ใช้ได้กับอินพุตทั้งหมด แต่ล่ามออนไลน์จะไม่สามารถเรียกใช้อินพุตโดยที่ N> 3 เนื่องจากข้อ จำกัด ด้านหน่วยความจำและเวลา
Mego

@ ฉันเพียงแค่คิดว่าเพราะมันไม่สมเหตุสมผลถ้าคุณไม่มีk > 1ให้k <= Nถ้าคุณต้องการที่จะเก็บN < 3ที่ไม่ได้เลือกมากสำหรับค่าของNและkคุณสามารถลอง
Neil

4

MATL , 16 ไบต์

365:Z^!tXM=s>~Ym

การป้อนข้อมูลแรกคือที่สองคือNk

ลองออนไลน์!

นี่คือวิธีการแจงนับเช่นDennis 'Jelly answerดังนั้นตัวเลขอินพุตควรถูกเก็บไว้เล็กน้อยเนื่องจากข้อ จำกัด ของหน่วยความจำ

365:   % Vector [1 2 ... 365]
Z^     % Take N implicitly. Cartesian power. Gives a 2D array with each
       % "combination" on a row
!      % Transpose
t      % Duplicate
XM     % Mode (most frequent element) of each column
=      % Test for equality, element-wise with broadcast. For each column, gives
       % true for elements equal to that column's mode, false for the rest
s      % Sum of each column. Gives a row vector
>~     % Take k implicitly. True for elements equal or greater than k
Ym     % Mean of each column. Implicitly display

2
คุณเก่งกว่าเดนนิสเก่งมาก
m654

4
@ m654 มาดูกันว่าเขาตื่นเมื่อไหร่ :-D
Luis Mendo

2
ฉันตื่นขึ้นมา แต่สิ่งที่ดีที่สุดที่ฉันทำได้คือการผูก เจลลี่ต้องการอะตอมที่มีค่าเฉลี่ยจริงๆ...
Dennis

@ เดนนิสฉันคิดเหมือนกัน อาจเป็นโหมดอะตอมหรือไม่
Luis Mendo

0

J, 41 36 ไบต์

(+/%#)@(<:365&(#~>./@(#/.~)@#:i.@^))

วิธีการตรงไปข้างหน้าคล้ายกับวิธีอื่น ๆ วิ่งเข้าไปในปัญหาหน่วยความจำที่n> 3

การใช้

รับค่าของkบน LHS และnRHS

   f =: (+/%#)@(<:365&(#~>./@(#/.~)@#:i.@^))
   0 f 0
0
   0 f 1
1
   1 f 1
1
   0 f 2
1
   1 f 2
1
   2 f 2
0.00273973
   0 f 3
1
   1 f 3
1
   2 f 3
0.00820417
   3 f 3
7.5061e_6

บนพีซีของฉันโดยใช้ i7-4770k และตัวจับเวลาต่างประเทศการ6!:2คำนวณสำหรับn = 3ต้องใช้เวลาประมาณ 25 วินาที

   timer =: 6!:2
   timer '2 f 3'
24.7893
   timer '3 f 3'
24.896

คำอธิบาย

(+/%#)@(<:365&(#~>./@(#/.~)@#:i.@^)) Input: k on LHS, n on RHS
          365&                       The number 365
               #~                    Create n copies of 365
                                 ^   Calculate 365^n
                              i.@    The range [0, 1, ..., 365^n-1]
                            #:       Convert each value in the range to base-n and pad
                                     with zeroes to the right so that each has n digits
                     (#/.~)@         Find the size of each set of identical values
                 >./@                Find the max size of each
        <:                           Test each if greater than or equal to k
(+/%#)@                              Apply to the previous result
 +/                                  Find the sum of the values
    #                                Count the number of values
   %                                 Divide the sum by the count and return
โดยการใช้ไซต์ของเรา หมายความว่าคุณได้อ่านและทำความเข้าใจนโยบายคุกกี้และนโยบายความเป็นส่วนตัวของเราแล้ว
Licensed under cc by-sa 3.0 with attribution required.