ต้องขอบคุณทฤษฎีบทการตัดขั้นต่ำสูงสุดเรารู้ว่าเราสามารถใช้อัลกอริทึมใด ๆ ในการคำนวณการไหลสูงสุดในกราฟเครือข่ายเพื่อคำนวณ a -min-cut ดังนั้นความซับซ้อนของการคำนวณขั้นต่ำ -cut จึงไม่เกินความซับซ้อนของการคำนวณสูงสุด -flow( s , t ) ( s , t )
มันจะน้อยลงหรือไม่ มีอัลกอริทึมสำหรับการคำนวณขั้นต่ำ -cut ที่เร็วกว่าอัลกอริธึม max-flow หรือไม่?
ฉันพยายามหาลดลงเพื่อลด ) ปัญหา -max ไหลไปปัญหา -min ตัด แต่ผมก็ไม่สามารถที่จะหาคน ความคิดแรกของฉันคือใช้อัลกอริธึมการหารและการพิชิต: ก่อนอื่นให้หา min-cut ซึ่งแยกกราฟออกเป็นสองส่วน ตอนนี้หา max-flow แบบวนซ้ำสำหรับส่วนด้านซ้ายและ max-flow สำหรับส่วนที่ถูกต้องและรวมเข้าด้วยกันกับขอบทั้งหมดที่ตัดผ่าน สิ่งนี้จะทำงานเพื่อสร้างโฟลว์สูงสุด แต่เวลาทำงานที่เลวร้ายที่สุดของมันอาจมากเท่ากับเท่าใหญ่เท่ากับเวลาทำงานของอัลกอริธึมตัดขั้นต่ำ มีการลดที่ดีขึ้นหรือไม่
ฉันตระหนักถึงทฤษฎีการตัดขั้นต่ำแบบ max-flow แสดงให้เห็นว่าความซับซ้อนของการคำนวณคุณค่าของ max-flow นั้นเหมือนกับความซับซ้อนของการคำนวณความสามารถของการตัดขั้นต่ำ แต่นั่นไม่ใช่สิ่งที่ฉันถาม ฉันถามเกี่ยวกับปัญหาของการหา max-flow และการหา min-cut (อย่างชัดเจน)
สิ่งนี้มีความเกี่ยวข้องอย่างใกล้ชิดกับการคำนวณ max-flow จาก min-cutยกเว้น: (1) ฉันยอมให้ Cook Reduction (Turing reduction) ไม่ใช่แค่การลด Karp (การลดหลายครั้ง) และ (2) บางทีอาจให้เราสามารถหากราฟเช่นนั้นการตัดขั้นต่ำของทำให้ง่ายต่อการคำนวณ max-flow ของซึ่งเป็นสิ่งที่เกินขอบเขตสำหรับคำถามอื่นนั้น