อัลกอริทึมการทดสอบการกระจายสำหรับคุณสมบัติการแจกจ่าย P (ซึ่งเป็นเพียงส่วนย่อยของการแจกแจงทั้งหมดผ่าน [n]) ได้รับอนุญาตให้เข้าถึงตัวอย่างตามการแจกแจง D บางส่วนและจำเป็นต้องตัดสินใจ (whp) ถ้าหรือd ( D , P ) > ϵ ( dที่นี่มักจะเป็นℓ 1ระยะทาง) การวัดความซับซ้อนที่พบบ่อยที่สุดคือจำนวนตัวอย่างที่ใช้โดยอัลกอริทึม
ตอนนี้ในการทดสอบคุณสมบัติมาตรฐานที่คุณมีการเข้าถึงแบบสอบถามเพื่อวัตถุบางอย่างขอบเขตเชิงเส้นล่างเชิงเส้นบนความซับซ้อนของแบบสอบถามนั้นชัดเจนว่าเป็นขอบเขตล่างที่แข็งแกร่งที่สุดเท่าที่จะเป็นไปได้เนื่องจากข้อความค้นหาจะเผยให้เห็นวัตถุทั้งหมด นี่เป็นกรณีสำหรับการทดสอบการกระจายเช่นกัน?
เท่าที่ฉันเข้าใจขอบเขตบน "เล็กน้อย" สำหรับการทดสอบคุณสมบัติของการแจกแจงคือ --- โดยขอบเขตของ Chernoff นี่เพียงพอที่จะ "จดบันทึก" การแจกแจง D 'ซึ่งใกล้เคียงกับ D ในℓ 1ระยะทางและแล้วเราก็สามารถตรวจสอบว่ามีการกระจายใด ๆ ที่ใกล้กับ D' ที่อยู่ใน P (นี้อาจใช้เวลาอนันต์ แต่นี้ไม่เกี่ยวข้องกับความซับซ้อนตัวอย่าง)
- มีการทดสอบแบบ "เล็กน้อย" ที่ดีกว่าสำหรับคุณสมบัติการแจกแจงทั้งหมดหรือไม่
- มีคุณสมบัติการกระจายใด ๆ ที่เรารู้ว่าตัวอย่างขอบเขตต่ำกว่าแข็งแกร่งกว่าเชิงเส้นหรือไม่