พิจารณาเครือข่ายไฟฟ้าที่สร้างแบบจำลองเป็นกราฟระนาบ G โดยที่แต่ละขอบแทนตัวต้านทาน1Ω เราสามารถคำนวณความต้านทานที่มีประสิทธิภาพที่แน่นอนระหว่างสองจุดยอดใน G ได้เร็วแค่ไหน? เราสามารถคำนวณกระแสที่แน่นอนไหลไปตามขอบแต่ละข้างได้เร็วแค่ไหนหากเราต่อแบตเตอรี่ 1V เข้ากับจุดยอดสองจุดใน G
แรงดันและกระแสที่เป็นที่รู้จักของ Kirchhoff ลดปัญหานี้เพื่อแก้ไขระบบสมการเชิงเส้นด้วยหนึ่งตัวแปรต่อขอบ ผลลัพธ์ล่าสุด - อธิบายอย่างชัดเจนโดยKlein และRandić (1993)แต่โดยนัยในงานก่อนหน้านี้ของDoyle and Snell (1984) - ลดปัญหาในการแก้ปัญหาระบบเชิงเส้นด้วยตัวแปรหนึ่งตัวต่อยอดซึ่งแสดงถึงศักยภาพของโหนดนั้น เมทริกซ์สำหรับระบบเชิงเส้นนี้คือเมทริกซ์ Laplacian ของกราฟ
ทั้งระบบเชิงเส้นจะสามารถแก้ไขได้ตรงระยะเวลาโดยการผ่าซ้อนกันและแยกระนาบ [ ลิปตันโรส Tarjan 1979 ] นี่เป็นอัลกอริทึมที่เร็วที่สุดหรือไม่?
ผลน้ำเชื้อล่าสุดของ Spielman เต็งและอื่น ๆ ที่บ่งบอกว่าระบบ Laplacian ในพลกราฟจะสามารถแก้ไขได้โดยประมาณในเวลาที่ใกล้กับเชิงเส้น ดู [ Koutis Miller Peng 2010 ] สำหรับช่วงเวลาที่ดีที่สุดในปัจจุบันและบทความที่น่าทึ่งนี้ของ Erica Klarreich ที่ Simons Foundation สำหรับภาพรวมระดับสูง แต่ฉันสนใจเป็นพิเศษเกี่ยวกับอัลกอริธึมที่แน่นอนสำหรับกราฟระนาบ
สมมติว่ารูปแบบการคำนวณที่รองรับการคำนวณทางคณิตศาสตร์ที่แน่นอนในเวลาคงที่